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Abstract

Bridging the Gap between People and Policies in Security and Privacy

by

Umesh Shankar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Wagner, Chair

The most powerful of security and privacy mechanisms may be rendered ineffective

if people cannot use them. A common usability problem is that it is hard to specify the

policies that the mechanisms enforce. Indeed, the more powerful the mechanism, the larger

and more complex its policy can be; this makes it difficult not only to write a policy down,

but also to make sure that an existing policy is a secure one.

In this dissertation, we make progress in addressing both these problems: translating

people’s high-level intentions into low-level policies and verifying that low-level policies

meet high-level goals. To this end, we explore two application domains and their corre-

sponding user bases.

For system administrators, we define a useful secure information-flow property, which

we term CW-Lite. It says that untrusted processes should not be able to send unfiltered

inputs to trusted processes. This is a basic security concern which can lead to system

compromise, but it is unverified on most systems today because there is no effective, easy

way to do the verification. A big advantage of our approach is that system administrators

can perform a completely automated verification of CW-Lite using our tools, making it

easier to integrate into a system.

With Doppelganger, an extension to the Firefox browser, we target a wider audience.

Web browser cookies are used to manage relatively benign session state such as shopping

carts, but also—almost ubiquitously—to track and record users’ actions across sites and

sessions, representing a significant privacy risk. Doppelganger seeks to generate a good
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cookie policy for each user, one that reflects that user’s privacy vs. functionality cost-

benefit curve, in an automated way. It uses several techniques: it automatically determines

when certain cookies yield no benefit; when necessary, it asks the user to make a few in-

formed, high-level decisions; and lastly, it offers a one-click error-recovery mechanism.

We evaluated Doppelganger for privacy and usability in two experiments, including a con-

trolled usability study with 18 users. In both cases, we found that Doppelganger offered

greater privacy than the built-in browser settings, and that the cost in usability was modest.

Professor David Wagner
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Background and Motivation

The impetus for this dissertation is simple. I, like many others, have suffered much

irritation—and resultant insecurity—by systems whose configuration interfaces are overly

complex and ineffective; that is, not very usable. There is a good reason why getting usable

security right is difficult: security and privacy violations are often invisible and hard to

understand, but loss of easy access to functionality is obvious.

Recently, the tradeoffs in information security and privacy in computer security and

privacy have been modeled as microeconomic problems. Vila et al. [94] argue that people

don’t bother to read privacy policies on web sites because there is a “lemons market” for

privacy. That is, many sites have poor privacy practices, and consumers who can’t tell the

difference simply and rationally assume the worst. Put another way, it is hard to make an

individualized cost-benefit analysis when you don’t know what the costs and benefits are.

It is especially easy to make the wrong decision when you only know what the costs are,

namely, inconvenience, but cannot see the benefit you receive in not having your personal

data collected and sold to third parties. Gordon and Loeb did an economic analysis [48] of

investments in information security, and found that there may be good reasons to protect

only some data, and not necessarily the most sensitive data. Again, the difficulty—that is,

cost—of securing the data was a critical factor in their conclusion.

Our overarching goals in this dissertation are twofold: first, make the analysis of what to
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protect easier, by exposing costs and benefits; and second, to lower the costs themselves by

providing more usable mechanisms. In particular, we focus on the problem of configuring

security and privacy mechanisms. In our opinion, the capability for good security, and to

a lesser extent, privacy, exists already. It is wringing that ability out in practice that is

difficult, and configuration is a primary obstacle. (This is neatly summarized by Balfanz et

al. [9] in a retrospective on deploying a more usable wireless network setup scheme: “Tools

aren’t solutions.”)

In the interest of examining these issues in more detail, first let us lay down some

working definitions. We will say that a system is secure if actions that its operator does not

want to happen, cannot happen, and preserves privacy if it does not reveal information that

a user does not want to be revealed. We also say that a system is usable if tasks the user

wants to perform can be made to happen easily.

Right away, we can see a tension between these goals. In order to satisfy all the re-

quirements at once, a system must be a perfect filter, reflecting its user’s intentions exactly

with respect to which actions may be performed and which information may be inferred

during that process, disallowing all other actions and disclosures. Such systems are natu-

rally very difficult to build. It would be much easier if everyone were the same, in which

case we could hard-wire the correct set of features and policies once and for all. In the

real world, of course, the same products are used by many different kinds of people, and

so the products must be highly configurable. As soon as users have choices, they can make

mistakes.

Unfortunately, the way many systems work today is to start with certain defaults (oc-

casionally, there is a choice of standard profiles), then require any further customization to

be done through low-level languages for which little support is given. Rarely does the user

know if she has made a serious security-relevant configuration error—say, configuring a

web server to allow everyone access to administrative pages—since such errors allow too

much, not too little. The latter case is easy to detect because legitimate users will be denied

access and complain, but the former may go undetected until an attack occurs, and perhaps

not even then. This is true even for security-sensitive applications like the Apache [7] web

server—the mostly widely deployed server on the Internet [73]—and the OpenSSH [77]

secure shell server. The administrator enters a text configuration file, and the server uses
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it. Attackers will never complain if that file allows them to access more than they should

be able to. Some applications, such as the Gallery program [43] that serves web-based

photo album, perform a security configuration check when they are installed. This is a nice

feature, and a useful one. However, many security configuration problems arise because of

interactions between programs that no one program can anticipate or verify. Furthermore,

these kinds of errors are not going to be solved through software patches, nor publicized on

vulnerability mailing lists: they are local, site-specific problems, but no less damaging as a

result. In short, users need a way to verify that certain high-level properties (e.g., restricted

access to administrative controls) are preserved by low-level configuration policies.

High-level property /
User-level requirement

Low-level security/privacy policy

Translate Verify

Figure 1.1: Bridging the Gap. The focus of
our work is on bridging the gap between high-
level properties and low-level policy lan-
guages.

The converse problem exists as well,

especially for users with little technical

expertise. Such users still have security

and privacy preferences but may not have

the means to express them using a pol-

icy configuration language or intricate di-

alog boxes. Wherever possible, then, we

should strive to make the power of fine-

grained control available in a user-friendly

way; that is, to be able to translate each

user’s requirements into a low-level policy.

In summary, there are two tasks we can

do on users’ behalf: we can translate high-

level goals or intentions into low-level pol-

icy, which is particularly helpful for users

with coarse preferences or preferences that

are easier to express operationally; and we

can verify low-level policies to ensure that they meet high-level goals, which is particu-

larly helpful for system administrators who need to edit low-level policy but want to make

sure that no broad security invariants are violated inadvertently in the process. Both these

automations serve to reduce the cost of security and privacy enforcement, and so make

expending security effort a rational choice for more users.
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1.2 Target Domains and Approach

1.2.1 Bridging the Gap

The particular problem we are trying to address is summarized in Figure 1.1: we want

to make it easier to keep low-level policies and high-level goals in sync. Keeping effective

security and privacy within the reach of users is particularly important because these are

adversarial situations. Unlike conventional systems, failures are not random; even small

configuration mistakes can be blown up into large breaches. While we cannot very well

deploy a “perfect” configuration to each user, what we can do depends on the type of ap-

plication we are working with. One broad distinction we may make is between interactive

and non-interactive applications.

Let us define interactive applications to be those primarily concerned with accepting

and processing user input. Web browsers, word processors, and other office applications are

good examples. These applications often have broad, non-technical user bases, so solutions

aimed at them should be particularly user-friendly. On the other hand, their interactive

nature means that, first, we have time to do some processing at runtime, and second, that

we can get feedback from the user. This latter capability is very useful, as it allows us to

iteratively refine the underlying policy.

Non-interactive applications are those meant to run largely unattended. Network in-

trusion detection systems, operating system access controls, and web servers are typical

examples. These applications are often configured by more skilled users, like system ad-

ministrators, who may write at least parts of the security policy by hand to match their

operating needs. The automated nature of these systems means that they usually process a

large number of transactions or authorizations in the background, so runtime interruptions

are not just undesirable; oftentimes there will not even be a user present. Accordingly, we

prefer static analyses for such systems, ones that perform verifications before the system

even starts running.
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1.2.2 Automating Translation and Verification

From an implementation standpoint, our focus will be on automating the translation

and verification steps for particular policy languages. That is, we will build systems that

take high-level input and observations and generate a policy automatically, or which verify

high-level properties from a policy automatically, with little or no manual intervention.

After all, the goal is to make things easier for users, with the expectation that if things are

easier, people will use them more, improving practical security and privacy.

Let us next note that while the security and problems we are trying to address are

widespread and real, we have defined the properties to be verified or translated in such a

way as to make them amenable to automated analysis. Actually, this is an important step.

It is useful to have a clear idea of the goals and effectiveness of a particular method, so it is

easier to know when we have made progress. It is our view also that a new system or policy

language should not be developed in isolation, but rather with a view towards user-friendly,

ideally automatic, security and privacy protections.

One way to do this is simply to make the user use a restricted language whose lack

of expressive power makes it harder to express unsafe actions. Type-safe programming

languages are one example; the programmer cannot violate type safety (see [97] for a for-

malism) because it isn’t possible to express an invalid type conversion. Another interesting

case, closer to our work, is the Firmato tool [10], which gathers network information and

combines it with a high-level language to generate low-level firewall configurations. What

you lose, of course, is flexibility; unsophisticated users may not have the wherewithal to

write down a policy at all, and sophisticated ones may want to use the full expressive power

of the underlying system.

We want to get the best of both worlds, if we can. We want to preserve and expose

the underlying fine-grained mechanism to let us approximate an ideal policy as closely

as possible, and to allow more sophisticated users to edit it directly. At the same time,

we want automated generation and verification of the policy. In this thesis, we’ll explore

one interactive application, in looking at web browser privacy mechanisms, and one non-

interactive application, operating system security policy enforcement. While hardly the

final word on the subject, the hope is that in addition to making these steps forward we will
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learn some lessons about what works and what does not for future efforts.

The policy-generation direction lends itself more naturally to interactive applications.

Few users will be writing their own browser privacy policies by hand, but many users do

have different (and currently largely uncaptured) privacy preferences and browsing habits.

In Chapter 4, we will attempt to translate these preferences into a browser cookie policy

during the browsing process without putting too much burden on the user.

Conversely, system administrators often have the expertise to write some of their secu-

rity policies by hand, and to know what high-level security properties they want to preserve,

but are overwhelmed by the sheer amount of information required to do this verification by

hand. The non-interactive applications that they use are therefore good candidates for auto-

mated policy verification. Although a lot of attention has been given to security monitors in

the research literature (see Section 2.1), in practice on most machines some basic security

properties remain unchecked. In our treatment of the subject in Chapter 3, we’ll look at

some of the reasons why this old problem has persisted and try to make progress by setting

reasonable goals that we can achieve using automated means.

1.3 Summary of implementation and results

1.3.1 Operating system security policy (Chapter 2)

One of an operating system’s primary functions is to control access to resources, in-

cluding files, network data, the screen, and so forth. From a security perspective, it is best

if the OS implements complete mediation, that is, every security-relevant operation that a

process can perform is given a yes-or-no decision. The more fine-grained the mechanism,

the more control the administrator has over what is allowed and what is not. That means

that the principle of least privilege, in which each process is given the minimal required set

of permissions needed for it to work at any time, can be applied more accurately. But—and

here we return to what will become a tired refrain—this power comes with complexity, and

people are not good at dealing with that kind of complexity on their own.

It is therefore common for system security configuration mistakes to be made. When

the policy is too restrictive, usually the problem is fixed, because something breaks and
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the administrator is notified. When it is too permissive, the mistake is often unnoticed,

and a sufficiently wrong configuration can lead to a compromise of the system. Since

security policies can run to many megabytes, automated tools are essential to make sure

that policy doesn’t inadvertently have particularly gaping holes that the administrator does

not intend. It is quite possible to create a significant vulnerability by changing just a few

innocent-seeming permissions for different applications, which happen to interact in a way

that magnifies the impact of the changes. Naturally, we want a way to ensure that small

changes do not compose to break some bigger system-wide security invariant. Just such

a tool is what we describe in Chapter 3. Of course, the tool needs to check some specific

property; in this case, it verifies an information-flow integrity property of the system that

we term CW-Lite. The idea is simple enough: we want to make sure that trusted processes

on a system do not depend unduly on data controlled by untrusted users on that system. But

there are several practical and historical reasons why this check is not routinely performed;

we aim to change that situation here.

1.3.2 Web browser privacy policy (Chapters 3 and 4)

Web browser cookies are small data items stored in your browser by web sites in order

to maintain session state for things like shopping carts. However, they can, and often are,

used for privacy-compromising purposes like tracking your browsing actions or building

extensive profiles of the kinds of sites you visit, what you buy, and when and from where

you do all these things. Both Internet Explorer and Mozilla Firefox, which account about

96% of the browser market as of July 2006 [76], ship by default with policies that allow

all cookies. That is because doing so allows all sites to work properly, and so causes the

fewest support requests. It does not do much to protect users’ privacy. There are more

privacy-preserving settings available in the browsers, but they have drawbacks. They either

(1) apply to all sites, which does not account for individual preferences, (2) do not protect

privacy particularly well, or (3) require extraordinary user effort to maintain. The ideal

system would figure out exactly which cookies the user “wants”, that is, which ones have a

benefit in functionality that, in the user’s estimation, outweighs the privacy loss incurred.

We designed and built a new system, called Doppelganger, which manages browser
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cookies and attempts to figure out which cookies to accept automatically. It does this by

secretly mirroring the user’s session at each site in a hidden window (hence the name). The

hidden browser window is managed by Doppelganger, which replays the user’s actions into

it. The difference between the two windows is that the hidden window accepts more cook-

ies that the visible one. In effect, we are taking a “partial derivative” with respect to those

additional cookies. By comparing the two windows’ contents, therefore, Doppelganger can

see if the cookies yield any tangible benefits. If so, then it displays the two windows side-

by-side, with differences highlighted (to show the benefit) and can provide the user with

any available information on the privacy loss incurred (to show the cost); the user only

needs to make a left-or-right-is-better decision.

Recognizing that mistakes are made, Doppelganger has an automated recovery mecha-

nisms to fix many wrong decisions after the fact. In testing, Doppelganger yielded the same

cookie set (or better) as the most effort-intensive, all-manual existing browser setting (even

supposing an omnipotent user which made all the right decisions), but with considerably

lower user burden. This was true in both our own manual tests and in controlled usability

testing with eighteen test subjects.

Doppelganger collect high-level input from the user in different forms. It collects ex-

plicit input, such as when a user makes a choice between the main and mirrored windows,

or when the user invokes the error-recovery mechanism. But it also collects implicit input:

the way in which users use sites provides information as well. For example, if the user

logs in to a site with username and password, Doppelganger automatically enables session

cookies for the site, on the theory that a log-in is already more privacy-compromising than

session cookies. Users may also use only portions of the site that don’t benefit from having

cookies enabled. For example, a user might use a shopping site for research but not for pur-

chases; Doppelganger could discriminate between that user and one who makes purchases

on the site if, say, only the shopping cart required cookies to function. Doppelganger com-

bines the information from these inputs and translates it into a low-level policy for that

user.

Of course, all this is not very useful if the system itself is hard to use. Software that

protects security and privacy is particularly vulnerable to usability failures, since the bene-

fits of the software are hidden, but the annoyance is not. In addition, the threats themselves
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may not be well understood by the users of the system. While a long-term study with a

large number of users would be ideal for measuring Doppelganger’s usability, due to prac-

tical concerns we conducted a controlled study on a more modest scale. Nonetheless, we

learned some important lessons: users indeed were able to protect privacy very well with

Doppelganger, accepting far fewer persistent and third-party cookies than the default. Most

users still found completing the study browsing tasks “easy” or “very easy”. Full results

are discussed in Chapter 5.

In the next chapter, we will put our work in a broader context by examining related

work in more detail.
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Chapter 2

Related Work

2.1 Security policy configuration and verification

The security of a computer system is a function of the behavior and interaction of

each of its components: typically the hardware, operating system, user-mode programs,

and the users themselves. One major difficulty in analyzing these interactions is that the

components’ behavior generally depends on a variety of configuration settings that can vary

from installation to installation. As a result, it is impossible for someone to buy a “secure

operating system” or “secure hardware” in isolation, since they may interact in insecure

ways, or may be configured in a way that is insecure given the operating environment. The

burden of system security is therefore generally the province of the system’s operator, who

must manage the interactions between complex components just so in order to achieve a

secure state.

In our work on system security in this dissertation, we consider a particular subset

of this problem: we define an information-flow integrity property which considers data

channels between user-level programs that interact via a trusted operating system, and im-

plement a system that verifies that property. We say that there is an information flow from

process A to process B if A can write to an object (e.g., file) which B can read. In other

words, A can control the content of an input to B. The mechanism governing this interac-

tion is called an access control system, since it decides which processes can access which

objects. An information flow integrity property typically seeks to control information flows
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to a trusted process, to prevent the process’ being compromised by an untrusted user.

In order to put our work in context, we will review a few related research directions:

formal models of information flow security, including some that are inspired by real-world,

domain-specific requirements, and tools that check those security models and other prop-

erties. We will also look at policy generation and verification for a different domain—

network firewalls—where the literature on actual implementations and practical experience

is richer.

2.1.1 Integrity vs. confidentiality

There are broadly speaking two kinds of information-flow security properties: confiden-

tiality and integrity. To understand these, let us divide the processes running on a system

into two exclusive classes: the first includes trusted processes containing sensitive informa-

tion, and the second includes everything else, typically processes executed by unprivileged

users who should not have access to the sensitive information. The former class is often

given the label “high” and the latter “low”, reflecting their respective degrees of sensitivity.

The confidentiality property is the one that most people think of when security is men-

tioned. It requires that sensitive data cannot be read by unprivileged principals. Bell and La-

Padula [11] formalized this as follows: each subject (i.e., user or process) and object (e.g.,

a file) in a system is given a security label from a hierarchy of labels. A typical example

of a label set would be unclassified < classified < top secret. Confiden-

tiality is preserved via enforcement of two rules. The no read-up rule states that no subject

may read an object at a higher security level. For example, a user with a classified

label may not read a top secret-labeled file. The no write-down rule states that no sub-

ject may write to an object at a lower security level, so for example a top secret user

may not write to an unclassified file. In specifying restrictions between subjects and

objects at different levels, Bell-LaPadula is an example of multi-level security, or MLS.

The integrity property is the dual of confidentiality; the idea is that if a privileged subject

accepts input from an unprivileged one, the former may be used as a proxy to perform

operations normally denied to the latter. Sensitive data could be compromised or modified

without proper authorization. Biba [12] described exactly this property formally: subjects
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are allowed to read up and write down, but not vice-versa. The operating system or other

mediation mechanisms can, given the labels, enforce these restrictions without regard to

the particulars of the processes themselves. For the remainder of our review, we will focus

primarily on work that addresses integrity, rather than confidentiality (though some do

both).

Sometimes data will need to cross label boundaries. An upgrading operation changes

a label from “low” to “high”, and downgrading does the opposite. An upgrading operation

typically follows some verification that the data in question meets a certain format or stan-

dard for “high” data; a downgrading operation can be thought of as a declassification of

data (or, commonly, a portion or summary of sensitive data).

2.1.2 A note on covert channels

So far, we have discussed security in terms of having explicit access to sensitive data,

such as reading or writing it via ordinary system mechanisms. There are, however, other

ways to transmit information implicitly or using out-of-band channels; these are typically

referred to as covert channels. Lampson [60] observed that even when explicit channels

are suitably controlled via things like file access permissions, processes with access to sen-

sitive data may communicate information about that data in other ways. For example, the

communicating process may use the system in a way that degrades system-wide perfor-

mance, such as by heavy disk or memory usage; that performance change can be observed

by an unprivileged process and by controlling the usage, a communication channel (albeit

a low-bit-rate one) may be established.

Goguen and Meseguer [46] introduced a noninterference property that captures confi-

dentiality in the presence of covert channels. In short, the property states that untrusted

subjects’ behavior given the presence of trusted subjects operating on sensitive data is ex-

actly the same as it would be in the absence of those trusted subjects.

Eliminating covert channels is an extremely difficult problem to solve, and we do not

attempt to solve it in this dissertation; indeed, in our work on integrity we further assume

that trusted processes are written with benign intent.
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2.1.3 Formal models of integrity

We have already discussed the Biba model, which provides a foundation for virtu-

ally every integrity model to follow. Changes to the Biba model are necessary to have a

model that is useful on real-world systems for which Biba’s strict no-write-up, no-read-

down requirements are unsuitable. In practice, almost no systems can adhere to so strict a

requirement.

So far we have modeled processes and objects using strict hierarchies of privilege. Den-

ning [31] generalized this to a lattice structure, reflecting the fact that, for example, there

may be parallel hierarchies of trust with a common upper bound (e.g., highest privilege)

and a common lower bound (e.g., no privilege). Denning and Denning [32] also noted

the need for control-flow dependence analysis in building a sound model. For example, a

sensitive value S may never explicitly be leaked via assignment, but a public value P that

implicitly depends on it may leak information, via code that looks like (e.g.)

if (S)
P = 1;

else
P = 0;

By knowing the value of P , an attacker would also know the value of S. The authors term

this the confinement problem.

The Clark-Wilson [25] model takes a step forward from Biba by acknowledging that

sometimes subjects at different privilege levels must share data; in particular, sometimes

privileged subjects must process data generated by unprivileged ones. Obviously such data

could not be used unchecked, and indeed Clark-Wilson requires that all inputs be verified

to meet an application-specific invariant. To borrow an example from [6], the invariant for a

bank might be that the assets and liabilities books balance. To accept a transaction as input,

this invariant must be verified to hold, since the transaction would then enter the trusted

portion of the system, where the invariant is always assumed true. Clark-Wilson therefore

takes a more holistic view of integrity, imposing requirements not only on the operating

system’s security policy but also on applications’ handling of data.

The Caernarvon model [84] starts with the Biba model, but allows processes to span

multiple levels. In particular, it defines special “guard processes,” which are allowed
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to upgrade certain inputs while retaining the ability to manipulate sensitive data as well.

Caernarvon also supports using separate read and write lattices, to allow for different se-

crecy and integrity policies. The target application domain is smart card operating systems

and applications.

2.1.4 From theory to practice

Practical challenges

The downgrading/upgrading problem is identified by Anderson et al. [6] as being a sig-

nificant obstacle to implementation of Biba and other MLS systems. In short, processes at

different security levels often need to share data. Clark-Wilson takes a step in this direction,

but is still sufficiently heavyweight that it has not seen widespread implementation. Part of

the reason is that, as Landwehr [61] observed, a close match between a model and partic-

ular operational or business requirements is very important for successful deployment. It

is impractical for users to give up useful features or spend inordinate amounts of time or

money on compliance without a clear return on that investment.

Dynamic labeling

A few information-flow frameworks have sought to achieve practicality by removing

the need to do static labeling of all subjects and objects. These approaches have the advan-

tage that undesirable flows are still blocked from occurring with lower initial investment,

but they are subject to less predictable runtime behavior, i.e., bad flows may not be discov-

ered until they actually occur. Myers and Liskov [69, 70] introduce a “decentralized label

model,” in which data is labeled to preserve secrecy, but individual applications have abso-

lute discretion to perform declassification (downgrading). This makes it easier to integrate

external code into a system. Foley et al. [38] also take a dynamic labeling approach, but

their system addresses both upgrading and downgrading, allowing for both secrecy and in-

tegrity information-flow property checks. Neither of these systems has been implemented

to our knowledge. The LOMAC [39], or “Low Water-Mark Mandatory Access Control,”

system implements the Biba integrity model in a dynamic fashion. All untrusted data is
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labeled “low”, and any process that reads that data is dynamically labeled “low”. A “low”

process is not allowed to read any “high” data. LOMAC features a working implementation

on both Linux and FreeBSD.

Access Control and Integrity infrastructure

The SELinux system [71], developed by the NSA, is an access control system mod-

ule for Linux that allows very fine-grained control over security-relevant operations. It

seeks to offer complete mediation over all such operations; that is, it is possible to con-

trol whether each individual operation is allowed or denied. Because of its flexibility and

power, SELinux policies can be large and complicated, but it provides a platform on which

other, more targeted systems can be layered. Indeed, our work on integrity verification (see

Chapter 3) uses SELinux in its implementation.

In order to have a stronger system integrity guarantee, it is important to have trust in

the process by which the operating system and a module like SELinux themselves were

loaded. A trusted hardware module, such as the IBM 4758 Trusted Platform Module [34],

can be used to bootstrap trust through the system startup process. Sailer et al.’s Integrity

Measurement Architecture [83] is an attestation mechanism that can be used to provide

proof of loaded code and files to a remote party. Jaeger et al. [53] extended this approach

to include an attestation of our CW-Lite integrity property (Chapter 3).

Policy-checking tools

Schneider [85] defines the class of policy enforcement mechanisms that work at the

operating system or firewall level as “Execution Monitors (EM)”. An EM mechanism can

watch some external behavior of a process and restrict it, but does not look inside the

program itself. This is as compared with mechanisms that rely on program analysis, e.g.

[72, 63]. In our work on CW-Lite, while we consider the effects of internal program be-

havior by sending additional signals to the operating system, all enforcement takes place at

the EM level.

The apol [91] tool allows the user to search for information flows between pairs of

subjects in an SELinux policy. The SLAT tool [49] enables further analysis by model
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checkers by converting an SELinux policy into a labeled graph. The Gokyo tool of Jaeger

et al. [52, 54] allows a deeper analysis, including an all-pairs information-flow analysis

which can detect integrity-violating flows. Gokyo is used as part of the CW-Lite verification

procedure. Further work [55] shows how Gokyo may be used to help resolve illegal flows

that are found.

2.1.5 Specialized models

Two information flow models used for particular domains have garnered attention: the

Chinese Wall model of Brewer and Nash [14], used to model the rules governing analysts

at firms also providing business financial products; and the BMA (British Medical As-

sociation) model, a set of guidelines set forth by Ross Anderson and enacted by Denley

and Weston-Smith [30] for restricting access to medical records in a clinical setting. Both

models address secrecy and confidentiality.

The Chinese Wall model is meant to separate financial analysts who cover a sector from

1) analysts covering other companies in that sector and 2) the people at the firm selling

services to companies in the sector. The interesting twist is the adaptive access control:

what the analyst can read depends on what she has already read.

The BMA model covers access to medical records. There are several principals: the

patient, the doctors, the specialists, the clerks, etc. This model has a temporal component,

for example limiting a ward nurse’s read access to the records only of those patients who

have been in the ward in the past 30 days. There are also accesses that are contingent on

patient or other notification and, in some cases, explicit consent.

2.1.6 Firewall policy management implementations

While our work in this dissertation does not deal with network firewalls per se, consid-

erable attention has been given recently to properly configuring and managing them. Their

policy languages tend to be somewhat simpler than OS policies, but interactions between

firewalls, a large number of site-specific special cases, and their place as the first line of de-

fense can make secure configuration difficult. The reader may find these case studies and



17

implementations useful as a real-world example of the translation and verification approach

to policy.

Wool [96] performs an analysis of configuration errors in real large installations and

presents data detailing their respective frequencies, as well other factors that correlate with

misconfiguration. Fang [65] is an interactive query tool that takes distributed firewall poli-

cies and topology as input and allows the user to see what the rules imply. FIREMAN [100]

can perform a static analysis using model checking across a distributed ruleset to discover

flaws. Permpoontanalarp and Rujimethabhas [79] take the converse approach, offering a

formalism for generation of correct policies. FACE [92] and Firmato [10] can generate

distributed rulesets from a central knowledge base and security policy.

2.2 Browser privacy and usability

In this section, we will first explore the history and privacy implications of browser

cookies, then look at tools that help users to manage cookies. Next, we will look at relevant

previous work on usable security and privacy as well as the economics of security and

privacy. The latter will help to motivate our approach in Doppelganger and to explore its

implications. Finally, we will look at Recovery-Oriented Computing, whose techniques we

use in Doppelganger’s error-recovery mechanism.

2.2.1 Cookies and tracking

Cookies are the state-tracking mechanism for the HTTP protocol. A server can send the

client a cookie, a small string, which the client will store and in turn send with subsequent

requests back to that server. The internet standards for HTTP cookies are in the IETF RFCs

2109 [56] and 2965[57], the latter nominally superseding the former. In fact, much of the

latter standard remains unimplemented on a wide scale. Cookies can be used for tracking

users, since the server can use them to associate requests to a particular user over long pe-

riods of time. Besides this privacy implication, which is the main one which we address in

Doppelganger, there are security concerns stemming from cookies. Among these are the

ambiguity of the domain-matching algorithm that decides to which servers cookies should
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be sent and the use of cookies for security-relevant tasks like authentication. Another stan-

dards document, RFC 2964 [67], lays out best practices for cookie use in browsers and by

servers. Its recommendation not to use cookies for authentication is widely flouted [41];

nonetheless its recommendations are generally sound. David Kristol’s reflections [58] on

the development of the cookie standard are interesting and help shed light on the way in

which controversial aspects of the standard were decided. A more detailed description of

cookie types and implementation can be found in Section 4.2.

Because of the threat of tracking, many users have taken steps to mitigate the threat

by disabling or deleting [75] third-party cookies, which are those sent by a site other than

the primary one being viewed. The most common example of these are cookies sent by

advertising images, which are often served by a large third-party advertising firm. Such

cookies can be used for cross-domain tracking. In response to third-party cookie blocking,

sites have employed two common countermeasures: redirection [81], in which the user is

sent through the advertising site on the way to another destination, using HTTP redirect

commands; and using IFRAMEs [88], which can act like images visually but in the Firefox

browser are treated as being in first-party context, where cookies are typically allowed.

There are other ways to track users besides cookies. A server can use web bugs, or

invisible images, whose URLs carry an identifier unique to a user. By viewing a page

containing the image, the server can know that the user has visited the page. This becomes

worse for privacy when the web bug is served by a site that serves such bugs for many

other sites. Web bugs in an HTML e-mail can serve as an implicit (and possibly unwanted)

confirmation that the message has been read, and from which computer. Bugnosis [5] is a

browser plugin that notifies the user of the presence of web bugs, but does not attempt to

disable or otherwise mitigate their threat. Disabling cookies makes web bugs less privacy-

compromising by making it more difficult to correlate web bugs from different locations.

2.2.2 Existing tools for cookie management

Most of the existing tools for managing cookies are fairly simple, allowing users to

view and edit cookies and perhaps enable or disable cookies for the current site. None

of these make the decision-making process particularly easier, and keep the focus on the
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opaque cookie data items themselves rather than the larger privacy and functionality issues.

Cookie Button [26], Cookie Toggle [28], and Permit Cookies [78] add toolbars and enable

keyboard shortcuts to help users quickly change cookie policies for the current domain.

Add’n’Edit Cookies [4], Cookie Culler [27], and View Cookies [93] add shortcuts to easily

view and delete cookies stored for a particular domain.

Millett et al. [66] develop the notion of “informed consent” online, whereby users un-

derstand what is being disclosed about them and their actions, and can consent to this dis-

closure. The authors apply this framework to the cookie interface design in the Netscape

and Internet Explorer browsers from 1995 to 2000, generally finding them lacking. Fried-

man et al. [40] continue with this theme, identifying a specific problem with cookie man-

agement: users need awareness but not intrusiveness for a cookie management tool to be

useful. The authors implemented a “Cookie-Watcher” plugin for the Mozilla browser [68]

that showed the user’s cookies to the user along with color coding based on the type of

cookie. Cookies could be removed, and there were also help screens to explain cookie

concepts. Ultimately, though, the system did not really help users figure out which cook-

ies were useful, and the authors only measured the system on user satisfaction rather than

privacy outcomes.

The Acumen [45] system is a bolder step in the right direction. It implements a recom-

mendation system for helping users decide which cookies to accept. Essentially, users can

see how many other people accepted a cookie from the current site, and make a decision

accordingly. This approach certainly has promise, but suffers from some drawbacks: it

does not have personalized recommendations, so although a user can know if a cookie has

been accepted by 50% of others, he does know which half of the population he belongs to;

it uses a central repository of data, which itself could compromise users’ privacy; and such

systems are vulnerable to poisoning of the data by sites which inject false positive recom-

mendations for themselves or negative ones for other sites. Acumen gives a higher weight

to the opinion of “mavens”; however, mavens are chosen based on the volume, rather than

the quality, of their decisions.
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2.2.3 P3P

The Platform for Privacy Preferences (P3P) Project [90] is a protocol developed by the

World Wide Web Consortium to help inform users of the privacy guarantees of the web

sites they visit. P3P envisions users configuring their web browsers with specifications of

their privacy requirements while surfing the web. Then, when a user visits a web site, that

site will send a compact P3P policy specifying how it uses personal information, and the

browser will determine whether the user’s and site’s policies are compatible. If not, the

browser would inform the user of the incompatibility. P3P seems useful for helping users

make informed decisions about their cookies policies, but in practice P3P has many prob-

lems [22], not least the difficulty in constructing policies and the lack of any enforcement

guarantee. Egelman et al. [35] found that as of 2005, only 13.6% of popular sites had P3P

policies.

Privacy Bird [21] attempts to make P3P more useful by showing an icon that indicates

the level of privacy protection offered by the site being viewed. Privacy Finder [19] extends

this idea by annotating search results to help users decide between search results based on

privacy.

There are also products to show and analyze P3P policies. Privacy Fox [8] can parse

a P3P policy and present it to the user in a more readable form. Byers et al. [20] and Levy

and Gutwin [62] describe tools for automated understand of sites’ privacy policies. It is our

hope that either P3P or some other privacy standard becomes more widely adopted, so that

a cost-benefit analysis can be more accurately performed by users and their browsers.

2.2.4 Privacy and usability

There are two important domains to look at in the area of security and privacy and

usability: an economic analysis of people’s attitudes towards online security and privacy,

and the usability of security and privacy software. Both are relatively nascent fields, for the

simple reason that a mass audience did not have to concern itself with these issues until the

widespread adoption of web browsers, starting about ten years ago.
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Economic analysis of privacy attitudes

There is still no consensus on how people make privacy decisions, partly because it is

hard to find a good natural experiment; it is hard to measure privacy in a laboratory setting

without using and potentially compromising subjects’ personal information.

Gideon et al. [44] conducted a user study with the Privacy Finder system (see above)

to measure privacy sensitivity vs. subject matter; subjects did use their own information.

Each participant had to purchase two items with his or her own credit card: a power strip

and a pack of condoms. Perhaps unsurprisingly, the authors found that people were more

likely to prefer privacy-friendly sites for condom purchases than for power-strip purchases.

There are more counterintuitive results, however. Acquisti and Grossklags [1, 2] iden-

tified some obstacles to economically efficient outcomes. One that is very relevant to our

discussion is the authors’ finding that users’ lack of information about privacy threats makes

it difficult to make a good decision. Furthermore, it is hard to know in advance what the

real cost of a privacy violation is going to be.

There are many ways for sites to get users to accept privacy risks, at least in study

conditions. If a site agrees to protect personal data from disclosure to third parties, users

are more likely to accept the risk [29]. Subjective feelings of trust in the site have also

been shown to induce users to accept more privacy costs [23]. Users will also give up

privacy for money or other rewards [51]; one may be tempted to put this value on their

privacy, but without simulating the privacy-compromised situation it is hard to know the

real valuation. So there is a paradoxical situation here: as we discussed earlier, there is

a lemons market for privacy [94], but since users don’t always know when their privacy

is being compromised, and because they (apparently) discount future risks heavily enough

to accept compromise for a low price in the present, privacy protections are still not very

good, or the result of an efficient market. It is possible that the nonlinear nature of privacy

compromise is a factor: independent personal facts may not be too damaging (and thus

not valued very highly), but as soon as an adversary gathers enough for identity theft, the

damage increases dramatically.
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Lessons about the usability of security and privacy software

In the last five years, there has been a sharp increase in usability studies of security

and privacy software. Whitten’s seminal study [95] on the (un)usability of PGP 5.0 was

enlightening: it highlighted the fact that users of security software face not only poor user

interface design, like users of all other software; they are also using software where it is

not clear if the outcomes they achieve are correct. Smetters and Grinter[89] point out that

traditional measures of usability like completion time and user satisfaction are insufficient

for security features, which are often a byproduct or tangential to the actual task at hand. At

the least, we must see if the security goal was in fact achieved. They go on to suggest that to

make progress, user interface advances are unlikely to be good enough unless coupled with

underlying changes that make success easier. Kuo et al. [59] had similar criticisms of the

application of conventional techniques to usability of security features. In response, they

advocate a combination of four approaches: mental model interviews, surveys, “contextual

inquiries” (observation of natural work patterns), and usability studies to gauge the ability

of participants to complete tasks.

DeWitt and Kuljis [33] found that users were “apathetic” about security and would rou-

tinely bypass security mechanisms to get work done faster. Users don’t like to be constantly

interrupted with questions or alerts; and when this happens, they will tend to disable or ig-

nore the offending mechanism [47, 99]. Zurko et al. [102] analyzed user behavior when

faced with security decisions in Lotus Notes. They found that users often simply did not

understand the implications of security decisions, and would make incorrect choices as a

result. Context also matters: when users were told in a one-time email to increase their se-

curity by a trusted party, they did so; but when faced with similar questions during ordinary

workflow, they would frequently make the opposite choice. Nonetheless, Adams and Sasse

argue [3], users can be motivated to care about security and even do a good job of it, if they

are educated properly and use security mechanisms that match what they need to do. Both

findings accord well with a rational incentive model of security; if users feel like security

will have a big payoff, and it is not too disruptive to achieve it, they will take the necessary

steps.
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2.2.5 Recovery-Oriented Computing (ROC)

The error recovery mechanism in Doppelganger uses concepts from Recovery-Oriented

Computing (ROC). Brown and Patterson [15] lay out the principles behind ROC: recogniz-

ing that failures, including human ones, are inevitable, and a focus on building mechanisms

to detect and recover from those errors. The main principle used in Doppelganger—the

rewind, recover, replay idiom—is laid out by Brown and Patterson in [17]. Lastly, a work-

ing instance of this model is used [16] in building an “undoable e-mail store”, which can

roll back and replay transactions as needed to recover from failures such as misconfigura-

tions.
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Chapter 3

CW-Lite: Verifying an information-flow

property of OS security policies

3.1 Introduction

In this chapter, we will look at a system for verifying a high-level security property,

CW-Lite, for a low-level operating system security policy. The system is aimed at system

administrators, who often need to make fine-grained, site-specific customizations to their

security policies but want to ensure that secure information-flow rules are preserved. Before

we look at the implementation, we must first understand why this problem exists.

3.1.1 Motivation and Goals

While operating systems provide isolation through separate memory spaces, processes

still interact via files, pipes, network connections, shared memory, and other mechanisms.

We say that there is an information flow between a process A and a process B if A can

write to some resource (e.g., a file or pipe) on which B depends. (We do not consider side-

channel attacks here.) The information-flow integrity verification problem is to prove that

a security-critical, or high integrity, process does not depend on information flows from

untrusted, or low integrity, processes.

Let us consider an example. If an untrusted user can write to the trusted OpenSSH con-
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figuration file, sshd config, that is a violation of information-flow integrity and a clear

security breach. Transitive flows must also be checked: if an untrusted user can run a cron

job that writes sshd config, there is obviously still an integrity violation. Merely set-

ting file permissions does not prevent attacks that operate via, say, pipes or shared memory:

we must consider all kinds of inputs. In general, if a trusted program depends on untrusted

inputs, an attacker may be able to gain escalated privilege or compromise the system. To

maintain information-flow integrity, a system must be properly configured, i.e., its set of

permissions must be such that illegal flows from untrusted processes to trusted ones are

not possible. That is, we must verify a higher-level integrity property of the configuration

rules. Such is the approach taken by the Biba [12] model, where the trusted process is said

to depend on a resource merely by reading it. That is, no untrusted inputs were allowed to

trusted processes.

This picture is complicated by the fact that many trusted processes must accept some

untrusted input to function. We say that each open() call (or equivalent, such as connect()

or accept) in the program constitutes an input interface, or simply an interface. Network

daemons must accept some input, such as HTTP requests or session logins, from the net-

work. Input to network interfaces may be controlled by an attacker. The programs running

on system must perform sanitization or filtering of inputs that come from untrusted sources.

By using filtering interfaces, the program can read from an untrusted resource, while con-

trolling the extent to which it depends on that resource.

In short, information-flow integrity requires a combination of two elements: (1) proper

configuration, which ensures that inputs that a program trusts (like configuration files) can-

not be written by untrusted users, and (2) filtering code, which ensures that inputs that a pro-

gram does not trust (like network input) are checked for well-formedness and application-

specific restrictions. Without the ability to communicate with trusted processes except by

very narrow interfaces, untrusted users’ attack options, and therefore potential exploits, are

limited.

The Clark-Wilson integrity model [25] covers both aspects and is a good match for

current trusted processes, requiring that all of processes’ inputs be filtered or sanitized.

However, Clark-Wilson is relatively heavyweight, requiring formal verification for pro-

grams. These and other integrity models were developed at a time when deep, complete
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program analysis for security was thought to be coming in the near future. That vision has

not been realized and, as a result, most systems in widespread use operate without any kind

of information-flow integrity verification. Landwehr’s 1981 survey [61] of security models

noted that many models worked well for a very particular class of applications, but often

did not, which easy can lead to (in his words) a “slippery slope” where more and more

rules are broken to make systems operational. It is important that whatever model we use

be practical not only in terms of meeting application needs, but also in ease of verification.

Previous models have not met both simultaneously.

For these reasons, the long-identified information-flow problem is not solved in prac-

tice: even though preventing untrusting users from unduly influencing trusted processes

is almost universally desirable, and even though system administrators are charged with

maintaining this property through a variety of complex mechanisms, for at least thirty years

most systems have operated without any assurance that they were configured to meet that

integrity goal.

Our aim here is to change this situation; to do so, we define a lighter-weight version

of Clark-Wilson integrity, which we term CW-Lite, that retains the same interprocess de-

pendency semantics as Clark-Wilson but omits the requirement that programs undergo full

formal verification. We then show how a combination of new and existing tools allows

practical verification of CW-Lite. These tools address both aspects of integrity verification:

they help administrators to find and fix configuration errors, and application developers to

find and annotate interfaces that require input sanitization. Verifying the CW-Lite property

on a system is largely automated: administrators only need to make manual decisions when

violations are found, and developers must only annotate untrusted input interfaces, which

are identified with our tools, with a simple macro. Naturally, developers must implement

filtering code on all reads from these interfaces in any case; the annotation serves to allow

static verification of CW-Lite.

Rather than have a tool that simply says that a system has violations, we have tried

where possible to make resolving the problems easier as well. We demonstrate the effec-

tiveness of our tools—and thus, the feasibility of achieving Clark-Wilson-style information-

flow guarantees—by applying them to privilege-separated OpenSSH, which interacts with

many system objects, and has the challenge of containing trusted and untrusted compo-
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nents within one application. We also analyze vsftpd to illustrate the general applicability

of our approach. We found several security policy configuration errors that permitted un-

necessary, possibly insecure flows. We also determined that certain other programs, such

as rlogind and xdm, caused insecure flows, and should not be run on systems that desire

information-flow integrity guarantees. Indeed, one of the benefits of checking information

flows on a system is that it makes the formerly implicit TCB of the system explicit, and

highlights programs whose presence on the system can cause insecure flows. Although not

every insecure information flow leads to an exploitable hole, by eliminating all such flows,

we eliminate all related exploits as well.

3.1.2 Contributions

In this work, we make the following contributions:

• We develop an information-flow integrity property, CW-Lite, which captures the in-

terprocess dependency semantics of Clark-Wilson integrity, but is verifiable on real

systems using tools and only a modest amount of manual effort;

• We develop a suite of tools as well as modifications to SELinux to support CW-Lite

enforcement;

• We apply our approach to OpenSSH and vsftpd, and find several integrity-violating

permissions in their default SELinux policies;

• In short, we have demonstrated practical verification of Clark-Wilson interprocess

information-flow integrity.

3.1.3 Roadmap

Section 3.2 contains a high-level overview of the CW-Lite model and its verification

process. In Section 3.3, we define CW-Lite formally, starting with the Clark-Wilson model

and weakening certain requirements. Section 3.4 describes our system modifications and

the algorithm used to verify the CW-Lite of a trusted application. In Section 3.5 we apply

our approach to OpenSSH and vsftpd on Linux with SELinux, describing how we used our
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tools to (1) identify filtering interfaces necessary to handle low integrity inputs; and (2)

resolve potentially harmful information flows that would not be filtered. We discuss related

work in Section 3.6 and summarize our findings and future work in Section 3.7.

3.2 Overview of CW-Lite and its Verification

There are two motivating observations behind CW-Lite. The first is that because the

Clark-Wilson model contains a formal verification requirement in addition to an interpro-

cess data flow model, it has proven too heavyweight for widespread use. However, the two

goals are separable, and we may profitably try to solve the latter goal independently. The

second observation is that Clark-Wilson requires filtering of all interfaces, but most trusted

programs only need to open untrusted interfaces at a small number of locations. Since in-

terfaces that read trusted inputs do not need to be filtered, this can lead to a lot unnecessary

work; deciding which inputs only take trusted inputs, however, cannot be done in a vacuum

since it requires knowledge of the system’s security policy.

The first observation led us to focus our work here on a concrete solution to the first

Clark-Wilson goal: securing interprocess information flows in an application-independent

way. Accordingly, CW-Lite duplicates the interprocess information-flow semantics of

Clark-Wilson. Full formal verification of the programs themselves is a separate and dif-

ficult problem; also, verifying semantic correctness is an application-specific task. Ob-

viously this kind of verification is very useful and can prevent other kinds of integrity

compromises (e.g., those resulting from buffer overflows), but we believe that separating

the two problems will allow simpler, more flexible solutions to each.

Verifying CW-Lite means ensuring that no unfiltered information flows exist from un-

trusted processes to trusted ones. To do this, we must first identify all possible interprocess

information flows. We do so by using a mandatory access-control (MAC) system that in-

terposes access checks on all interprocess flows; with a fine-grained MAC, we can make

meaningful statements about which flows are and are not possible. In this paper, we use

the SELinux [71] module for Linux, a fine-grained MAC system for Linux that implements

Role-Based Access Control with Type Enforcement. SELinux is now a standard part of
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Fedora Core Linux and is being integrated into many other Linux distributions.

Our second observation led us to extend the MAC system, so developers would not have

to filter on trusted inputs. In order to enforce least privilege for both trusted (non-filtering)

interfaces and untrusted (filtering) interfaces in one process, the MAC must distinguish

between the two kinds of interfaces, allowing only trusted flows to trusted interfaces but

allowing additional, untrusted, inputs to the others. By modifying SELinux to associate

two security contexts, or subject types, with each process instead of one, we can allow

only inputs from trusted processes by default, while enabling a special context, a filtering

subject type, for filtering interfaces that allows necessary kinds of untrusted inputs as well.

This separation reduces the burden on the developer relative to Clark-Wilson by requiring

filtering only of untrusted inputs, which they must do in any case. The only requirements

are that developer annotate filtering interfaces with a simple macro and put relevant permis-

sions in the filtering subject type. The annotate serves as a stipulation by the developer that

all reads from the interfaces are properly filtered. To facilitate this process, we also devel-

oped a tool that enables developers to identify which inputs should be annotated filtering

interfaces, based on the extra permissions they need. These small changes to the develop-

ment process and SELinux are also what enable automatic verification by administrators

on end systems.

Now that we have isolated the trusted interfaces into a separate subject type, we need

a way for administrators to detect illegal flows to it from untrusted sources, i.e., verify the

CW-Lite property on their systems. In previous work, Jaeger et al. developed the Gokyo

tool [52, 54], which can determine information flows from an SELinux policy by looking

at read-type and write-type permissions, then flag illegal ones when supplied with the sys-

tem’s TCB (assuming other kinds of processes are untrusted). We leverage Gokyo here

by having it ignore flows to the filtering subject type for the target application, reporting

information-flow violations only for the base subject type.
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3.3 CW-Lite

In this section, we state the CW-Lite model more formally. As we noted previously,

CW-Lite is a weakened version of the Clark-Wilson [25] integrity model, but the focus is on

controlling interprocess information flows, rather than formal verification of the programs

themselves (which is a separate, important problem). In particular, we do not discuss the

application-specific task of verifying the semantic correctness of filtering interfaces in this

paper. That is, we seek to provide assurance that filtering code has not been omitted, but

not assurance of that code’s semantic correctness.

3.3.1 Basic Information-Flow Integrity

In basic information-flow integrity models, dependence on low integrity data is defined

in terms of information flows. Such models require that no low integrity information flows

may be input to a high integrity subject.

We start with a definition of information flow based on two standard operators, modify

and observe where: (1) mod(s, o) is the modify operator where a subject (e.g., a process

or user) with subject label s writes to an object (e.g., a file or socket) with object label o

and (2) obs(s, o) is the observe operator where a subject of subject label s reads from an

entity of object label o. Additionally, we abuse mod to allow mod(s1, s2) where both s1

and s2 are subjects, to indicate when one process modifies another directly, for example

using signals.

Definition 1 (Intransitive information flow) flow(s1, s2) holds if information flows from

subject s1 to subject s2 in one step.

flow(s1, s2) := (∃o : mod(s1, o) ∧ obs(s2, o)) ∨mod(s1, s2)

Next, the operator int(x) defines the integrity level of x where x may be either a sub-

ject or an object. In information flow integrity models, integrity levels are related by a

lattice [31] where int(x) > int(y) means that y may depend on x, but not vice versa. For

our purposes, this means that trusted processes may not depend on untrusted ones. We
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assume in our discussion that int(x) is fixed for all x, but as a practical matter, the system

can be re-verified if this changes (for example, if a program is no longer trusted).

Definition 2 (Biba integrity) Biba integrity [12] is preserved for a subject s if (1) all high

integrity objects meet integrity requirements initially and (2) all information flows to s are

from subjects of equal or higher integrity:

∀si ∈ S, flow(si, s) ⇒ (int(si) ≥ int(s)).

where S is the set of all subjects.

Some information-flow based integrity models, such as LOMAC [39], operate differ-

ently but have the same information-flow integrity semantics as Biba. LOMAC allows

subjects to go from a higher to a lower integrity level if they read untrusted data, which

preserves the Biba definition in the future. It does not, however, deal with programs that

must read trusted data again in the future.

A note on transitivity. We note that while information flow is transitive in general, only

intransitive information flows need to be examined to detect a Biba integrity violation.

Suppose that A and B are untrusted and X and Y are trusted. If we have a transitive

information flow from A → B → X → Y , only the flow from B to X is needed to trigger

a Biba integrity violation, i.e., there is always some flow that crosses the boundary between

untrusted and trusted. It does not impact Biba integrity further that information can flow

from A to B. While we find Biba too restrictive, we want to preserve the need only to

check flows independently.

3.3.2 Clark-Wilson Integrity

The Clark-Wilson integrity model [25] provides a different view of dependence. Security-

critical processes may accept low integrity information flows (unconstrained data items or

UDIs), but the program must either discard or upgrade all the low integrity data from all in-

put interfaces. The key to eliminating dependence on low integrity information flows is the

presence of filtering interfaces that implement the discarding or upgrading of low integrity



32

data. The Clark-Wilson integrity model does not distinguish among program interfaces,

but treats the entire security-critical program as a highly assured black box. As a result, all

interfaces must be filtering interfaces.

In the original Clark-Wilson model, trusted processes are known as transformation

procedures (TPs), typically operate on CDIs (inputs that are trusted to meet application-

specific invariants), but may also accept UDIs if the TP is known to filter all its inputs.

Thus, our notion of trusted applications maps closely to Clark-Wilson’s transformation

procedures. Clark-Wilson also defined special trusted processes, called integrity verifica-

tion procedures (IVPs), that check the integrity of CDIs by performing appropriate integrity

checks on each data item. These are used to establish system-wide integrity at the start of

operation; we do not specifically consider such programs in our model.

We now define information flow in terms of a connection between subject labels and

their program interfaces. For this we need a more precise obs operator: obs(s, I, o) means

that the subject s reads an object of type o on interface I . An interface for a subject is a

distinct input information channel, and is created by, e.g., a particular open() call in a

program.

Definition 3 (Interface information flow) flow(si, s, I) holds if information flows in one

step from subject si to subject s through an interface I in a program running as subject s.

flow(si, s, I) := (mod(si, o) ∧ obs(s, I, o)) ∧ obs(s, I, si)

We also define the predicate filter(s, I) to mean that a subject s filters or sanitizes

input on an interface I , such that any required invariants are satisfied.

We are now ready to state the Clark-Wilson property.

Definition 4 (Clark-Wilson integrity) Clark-Wilson integrity is preserved for a subject s

if (1) all high integrity objects meet integrity requirements initially (i.e., the high-integrity

invariants are met initially); (2) the behavior of all programs that are loaded using s are

assured to be correct; and (3) all interfaces filter (i.e., upgrade or discard) low integrity

information flows:

∀si ∈ S, flow(si, s, I) ⇒ filter(s, I),
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where S is the set of all subjects.

While the Clark-Wilson model does not require separate multi-level secure processes

for upgrading, as does Biba, it requires a significant assurance effort. An important point

to note is that since a Clark-Wilson application programmer does not know the system’s

information flows in advance, Clark-Wilson requires that all interfaces be filtering inter-

faces. This is unnecessarily restrictive. In practice, often only a small number of interfaces

actually need to capable of filtering in the context of a real system to achieve the same

security. This set can be derived by analyzing the system’s security policy; that is, by us-

ing system knowledge in application development (since the developer can ship a security

policy with the application), we can reduce the filtering burden on the developer. We use

this observation in developing CW-Lite.

3.3.3 CW-Lite

Definition 5 (CW-Lite) CW-Lite is preserved for a subject s if: (1) all high integrity ob-

jects meet integrity requirements initially; (2) all trusted code is identifiable as high in-

tegrity (e.g., from its hash value as for NGSCB [36]); and (3) all information flows are

from subjects of equal or higher integrity unless they are filtered:

∀s, si ∈ S : (∃I : flow(si, s, I) ∧ ¬filter(s, I)) ⇒ (int(si) ≥ int(s))

, where S is again the set of all subjects.

That is, CW-Lite requires that the application’s information flows either adhere to Biba

integrity or that untrusted (low-integrity) inputs are handled by a filtering interface. Note

that this provides equivalent integrity to Clark-Wilson, since the only flows not being fil-

tered come from trusted sources. Recall that CW-Lite also does not require formal verifi-

cation of filtering interfaces; it simply requires the developer to mark filtering interfaces as

such so they can be handled correctly by the MAC system.
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Identify filtering interfaces
(may use settraceonerror())

Add DO_FILTER() annotation
to filtering interfaces

Add filtering subject type
to default security policy;

policy ships with application

Figure 3.1: Application developer tasks required to enable CW-Lite verification. Fil-
tering interfaces are those that accept inputs from untrusted sources, and must sanitize, or
filter the input. An interface is marked by a distinct call to open(), accept(), or other
call that enables data input. The DO FILTER() annotation on an interface tells the access-
control system to grant additional permissions allowed by the filtering subject type to that
interface. The default subject type, used on all other input interfaces, only allows inputs
from the the system TCB.

3.4 Developing CW-Lite-Compliant Systems

In this section, we tackle the CW-Lite tasks implied by the previous section. Recall that

the CW-Lite property is one that is verified for a particular target application running on

a particular system. Application developers must enable verification with small changes

to their programs and security policies, while the administrators perform the actual verifi-

cation on their systems. (See Figures 3.1 and 3.2 for flowcharts of these tasks.) For our

discussion, we use the term TCB (trusted computing base) to indicate the set of subjects

that must be trusted on the system in order to trust the set of target applications (e.g., sshd,

Apache, bind).

An application developer must:

1. Assuming some TCB and application configuration, identify untrusted inputs to the

program and implement filtering interfaces for each. This may be done using the

process in Section 3.4.4.
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Config
Errors?

Yes

Done

Choose a TCB
(one time for all apps)

Run Gokyo on app security 
policy (from developer)

Fix Errors: remove perms
or increase TCB

No

Figure 3.2: System Administrator tasks required to verify CW-Lite. The system ad-
ministrator decides on a system TCB initially. Then, when she wants to verify CW-Lite for
a particular trusted application, she runs Gokyo on its security policy. If no errors are re-
ported, CW-Lite integrity is verified. If it reports an illegal flows, the offending permissions
must be removed, or the TCB expanded to include the source of the illegal flows.
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2. Annotate those interfaces with the DO FILTER() annotation. These annotations are

used by the access control system as described in Section 3.4.2.

3. (Possibly in conjunction with a distribution maintainer:) Construct a default secu-

rity policy for the application that has two subject types: the default only allows

inputs from the TCB, and the other, for filtering interfaces, allows required types of

untrusted inputs as well.

Since application developers should be sanitizing their untrusted inputs anyway, this repre-

sents only a small amount of additional work to enable system-level integrity verification.

A system administrator must:

• One time only, choose a system TCB. (A TCB may be chosen per-application for a

multilevel trust model, but this is not necessary or common. In this scenario, each

target application would be associated with only the set of subjects on which it de-

pended, independent of other applications.)

• Run the security policy analysis tool for the target application as described in Sec-

tion 3.4.3.

• If no integrity-violating permissions are detected, then skip the next step.

• Classify each integrity-violating permission found by the tool to decide how to re-

move the illegal flow. See Section 3.4.5 for details on how to do this.

Note that verifying the CW-Lite property is done automatically using Gokyo; it is only

resolution of problems that requires manual intervention. In addition, our approach allows

each sysadmin to decide which applications trust on her system. She can evaluate the risk

of running a particular application in terms of what must be trusted in order to run it.

In the remainder of this section, we will first describe the SELinux access control sys-

tem, then show how we modified SELinux to support filtering interfaces and, therefore,

CW-Lite verification. We continue by addressing the developer and sysadmin tasks above,

including performing policy analysis and finding filtering interfaces.
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3.4.1 SELinux

The SELinux module [71] is a Linux Security Module (LSM) [98] that provides fine-

grained, comprehensive MAC enforcement. It ships standard with Fedora Linux, among

others, and it is quickly becoming standard to include attendant SELinux policies with ap-

plications. SELinux implements an extended form of Type Enforcement (TE) [13] with

domain transitions that enables expression of policies covering over 30 different kinds of

objects with about 10 operations each. SELinux is comprehensive because it aims to con-

trol all programs’ accesses to all security-relevant system objects. In this paper, we do

not examine verifying that the SELinux/LSM implementation is a correct reference mon-

itor. Previous work verified the LSM reference monitor interface [101], but verifying the

correctness of the SELinux implementation properties remains.

Key notions in SELinux are those of subject types and object types. A process’ security

context is determined by its subject type, much as the security context of an ordinary UNIX

process is determined by its effective UID. Likewise, non-process objects like files are

associated with an object type. Permissions are attached to a subject type in policy files;

if an Apache process has the subject type apache t, and its configuration file has object

type apache config t, we might say something like

allow apache_t apache_config_t:file
{stat read}

to allow Apache to call stat() on or read from its configuration file. SELinux does not

include a “deny” operation; all permissions are denied by default.

Although there are several access control concepts in the SELinux policy model besides

allow permissions by subjects on objects, only one other is relevant to information flow.

The relabel operations1 enable a subject to change the object label of an object. This

enables information flow from the old object label to the new one.

While it allows us great control and flexibility, such fine-grained, comprehensive con-

trol results in very large and complex access control policies. Frank Mayer describes the

SELinux policy model as an “assembler level” policy. In the August 19, 2004 release, the

default build results in a 500 KB compiled policy file. There are over 5,000 permission

1A subject needs the relabelfrom and relabelto permissions to implement a relabel.



38

Before After

Source Code Source Code
conn = accept() DO FILTER(conn = accept())
// accept() fails // accept() succeeds
get http request sanitized(conn) get http request sanitized(conn)

Security Policy (default DENY) Security Policy (default DENY)
Apache: ALLOW read httpd.conf Apache: ALLOW read httpd.conf
// Problem: network 6∈ TCB! // network officially 6∈ TCB
Apache: ALLOW accept Apache-filter: ALLOW accept

Figure 3.3: Supporting filtering interfaces. Initially, the program above is not allowed to
accept network input, because the network is not in the TCB. In order to accept such input,
the source code must filter it and the programmer must supply an annotation indicating that
the interface is filtered. Then the policy must be modified to allow the network input only
for the filtering interface. The DO FILTER()macro tells the MAC system to use the filter-
ing subject type permissions for the enclosed operations. We annotate accept() (which
implies a read/write socket), rather than subsequent socket read/write operations, because
that is where the MAC system performs access checks. This is analogous to how file access
checks, including read/write permission checks, are performed once on open(), not for
every read() or write() call.

assignment (allow) rules in the policy itself (in the file policy.conf). Note that this policy

contains just the base subjects; the complete policy, including policies for all shipping ap-

plications, is about ten times greater in size. As a result, understanding the higher-level

properties that a policy implies, such as information flow, cannot be done manually.

3.4.2 Supporting filtering interfaces in the MAC Policy

SELinux cannot distinguish among input interfaces in a single process. Some interfaces

may only have to process high integrity data, such as the interface that reads a configuration

file. Others have to be able to validate and upgrade certain types of low-integrity data such

as network input: these are filtering interfaces. In order to support filtering interfaces (and

therefore to check CW-Lite), we modified the SELinux user space library and kernel mod-

ule to support two subject types per process instead of one. The default subject type is used

for ordinary operation and allows inputs only from subjects in the application’s TCB; this is
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enforced by the Gokyo policy analysis in Section 3.4.3. The new filtering subject type, with

additional permissions, is used for interfaces with the appropriate DO FILTER() source

code annotation.

DO_FILTER(interface creation code) :=
use_filtering_subject_type();
interface creation code
use_default_subject_type();

The annotation serves as a contract with the programmer, who stipulates that input from the

interface is filtered. Our macro-like approach is deliberate, to discourage running a large

amount of code with higher privilege. Typically, only a single open()-type call requires

the permissions. An example of the required changes to the program and the security policy

for filtering interfaces is given in Figure 3.4.2.

Note that the accept() system call is still constrained by the MAC policy for the

filtering subject type. For example, the filtering subject type permissions for the application

might allow accepting connections from one network card, but not another.

3.4.3 MAC Policy Analysis

Once the target application’s untrusted inputs have been isolated into its filtering subject

types, we need only check that there are no untrusted inputs to the application’s default

subject type s.

We employ the Gokyo tool to compute information flows from an SELinux policy [52].

Gokyo represents access control policies as graphs where the nodes are the SELinux sub-

ject types and permissions, and the edges are assignments of permissions to subject types.

Based on whether the permission allows a mod operation, an obs operation, or both, Gokyo

computes all information flows to s. That is, it computes the set of subject types

F (s) = {s′ : ∃o : mod(s′, o) ∧ obs(s, o)},

where o is an object type. Gokyo also correctly handles flows implied by object relabeling;

see Figure 3.4 for details.
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Because the SELinux policy model also permits object relabeling, we must consider infor-
mation flows caused by modifying an object and relabeling it to another object type. The
relabel(s, obj, o, o′) operation enables subject s to change an object obj’s label from o to
o′. Since relabeling does not change the contents of an object, we do not really care who
does the relabel, just that it can occur. Also, it does not matter which specific object can be
relabeled, since all objects of the same object type are equivalent from an information flow
perspective. Thus, we use a refined predicate relabel(o, o′).
Next, we consider successive relabeling operations o1 → o2 → ... → oi. The transitive
closure of the relabel operation is defined by relabel(o1, oi). The relabel information flow
rule states that

mod(s1, o1) ∧ relabel(o1, oi) ∧ obs(si, I, oi)

⇒ flow(s1, si, I).

Gokyo accounts for information flows due to arbitrary relabeling.

Figure 3.4: Gokyo support for SELinux object relabeling
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Some of the non-target subjects may be designated as trusted subjects, and they form

the system’s TCB. The TCB includes subjects such as those that bootstrap the system (e.g.,

kernel and init), define the MAC policy (e.g., load policy), and do administration (e.g.,

sysadm).

Given the set of information flows and the TCB, the untrusted subjects with flows to s

are given by

U = F (s) ∩ ¬TCB.

If this set is empty, then CW-Lite holds for the target application. If not, Gokyo outputs

the set of permission assignments P that need to be examined, i.e., those that allow the

offending mod and obs operations:

P (s) = {p : ∃u ∈ U,∃o : flow(u, s) ∧ (p ⇒ mod(u, o) ∨ p ⇒ obs(s, o))}

where p is a permission assignment, u ∈ U , and o is some object type.

3.4.4 Finding filtering interfaces

Although we modified SELinux to support mediation for filtering interfaces separately

from other interfaces (Section 3.4.2, above), the developer still needs to make annotations

to tell SELinux whether a given interface performs filtering or not. As part of this process,

the developer needs to determine which interfaces require filtering. Some may be obvious,

but there may be permissions to access untrusted data that are used in a subtle way. The

developer can find these by running the security policy analysis on the default policy and

analyzing all integrity-violating permissions for the application.

The problem of determining where in a program a permission is used is outside the

scope of SELinux’s goals, so we implemented our own mechanism. We defined a new oper-

ation in SELinux called settraceonerror using the sysfs interface and made appropri-

ate changes to both SELinux’s user library and its kernel module. When settraceonerror(true)

is called from user space, our modified SELinux kernel module signals the process when-

ever a violation of the SELinux policy is found. The user library catches the signal and

traps the process into a separate xterm debugger (gdb). If the process forks, additional
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xterm windows with debuggers on the child processes are launched. Once in the debugger,

it is much easier, using stack traces and data inspection, to determine where and why a

permission error occurred and take appropriate action, either removing the offending oper-

ation or implementing a filtering interface. If the permission is never actually needed, then

it can simply be removed from the policy.

Some filtering interfaces may not need to actually filter the incoming data contents,

since some interfaces do not interpret the incoming data. For example, logrotate enables

automatic rotation of log files, but does not depend on the data in the files. Likewise, the cp

utility copies files, but does not consider their contents. In these cases, a DO FILTER()

annotation is still appropriate, rather than allowing the program to accept all inputs. This

is because (1) filtering based on metainformation (like input length) may still be needed;

and (2) the kinds of inputs may need to be restricted (for example, disallowing copies from

named pipes). Naturally, if the program semantics change later to include interpretation of

the untrusted data, the programmer should implement additional filtering code.

One may wonder why we use a dynamic approach to finding filtering interfaces. A

simple example is revealing: consider the interface fd = open(filename). In order

to decide statically if filtering is required, we would need to know the value of filename.

This may be partially addressed with a program analysis, though of course it is undecidable

and may come from dynamic data, say from the system’s configuration. The mapping of

filename to object type (which is what matters for integrity) is also system dependent, and

each administrator may keep files in different locations. Our approach works well enough

in practice, since the number of filtering interfaces is usually relatively small; while it

may have the coverage problem of dynamic analysis, it does not have the scalability and

decidability problems of static analysis.

3.4.5 Handling illegal information flows

If a sysadmin’s invocation of the policy analysis tool detects illegal information flows

implied by a set of permissions, one of a few actions is required. Some such permissions

are simply unneeded and may be removed. Some information flows may be generated by

programs that are untrusted, but optional to the system. An easy way to remove this in-
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formation flow is to exclude the offending code and subject types from the system. Some

permissions are needed by optional components of the target app; the options may be dis-

abled, and the permissions removed. If the permission is used by the core application, then

either the sysadmin may be assuming a smaller TCB than the developer or the developer

has not added a DO FILTER() annotation. The sysadmin can either not run the target

application or get the developer to write and annotate additional filtering interfaces.

3.5 Example: CW-Lite Integrity Verification

3.5.1 Goal

So far, we have defined CW-Lite and shown in general how applications can be con-

structed to satisfy its requirements. We have several goals in applying CW-Lite to our

primary example application, OpenSSH, and to vsftpd. First, we want to see how easy it is

to build applications to meet CW-Lite in practice. Since OpenSSH is a very popular, com-

plex, and security-critical program that has been architected to preserve the integrity of its

privileged components, verifying a useful integrity property can be of value to of millions

of systems and validate the security efforts of its developers. vsftpd is a somewhat simpler

example, and illustrative of a common case. Second, we want to see how close the default

SELinux policy is to enabling satisfaction of CW-Lite. Third, if either application (with the

standard shipping policy) does not initially meet CW-Lite integrity, we want to see why it

fails and how difficult it is modify the application or policy to enable success.

3.5.2 Setup

Provos et al. decomposed the server-side daemon of OpenSSH into privileged and un-

privileged components in order to minimize the amount of code that needs to run with

privilege. The privileged component exports a narrow interface to the unprivileged com-

ponents, such that only specific operations in a specific order may be requested, which

reduces the risk of the privileged component being compromised by a hijacked unprivi-

leged component. Privilege-separation has been added as an option to the main OpenSSH
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distribution.

The process graph for privilege-separated OpenSSH is shown in Figure 3.5. One privi-

leged component, listen, listens for new connections via port 22 and forks a new privileged

component, priv, per connection. This priv component performs the privileged operations

required by OpenSSH: authentication of the remote user, creation of pseudo-terminals, and

transition to a particular, authenticated userid. The priv component in turn spawns unpriv-

ileged components to handle various types of user interaction. The net component is used

to perform the remote interaction part of the authentication phase, which has in the past

been subject to compromise; it uses the priv component as a privileged server to handle

secret data operations. After successful authentication, priv spawns a shell or other process

requested by the user in that user’s security context.

vsftpd is the FTP server included with Fedora Core Linux. It too employs separate

trusted and untrusted processes, though its policy treats both the same. We do not discuss

its analysis in as much detail, but give a summary of the analysis and the results.

For testing, we used OpenSSH 3.6 and vsftpd 2.1.3 on an Intel x86 platform with the

Linux 2.6 kernel installed. We use SELinux (see Section 3.4.1) as our MAC system, using

the strict (not targeted) policy configuration for Fedora Core 4.

3.5.3 Roadmap for OpenSSH

The problem of verifying CW-Lite for privilege-separated OpenSSH is addressed by

ensuring that all information flows into the privileged components (listen or priv) either

contain only high integrity data or discard/upgrade the data via declared filtering interfaces.

Enabling OpenSSH to satisfy CW-Lite requires work by the application developer to

modify OpenSSH to find where filtering interfaces are necessary, build acceptable filter-

ing interfaces, and declare the presence of the filtering interfaces to SELinux. Then, the

administrator of the SELinux system needs to configure an SELinux policy that enables

satisfaction of CW-Lite. Recall that this policy will have a base set of permissions (subject

type) allowing only trusted input for normal interfaces and additional subject type to accept

requires types of untrusted input at the filtering interfaces.

The first step is to use the Gokyo policy analysis tool to identify the illegal informa-
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tion flows to priv and listen. The next task is to determine whether the remaining low

integrity flows can be handled by filtering interfaces. We use our tools (see Section 3.4.4)

to find the interfaces that accept low integrity data in the privileged components and add

the DO FILTER() annotation.

3.5.4 Inter-process Flow Analysis

Given the new SELinux policy for the OpenSSH components and the remainder of the

SELinux example policy for the rest of the system, we are ready to use Gokyo to find

low integrity information flows to the privileged OpenSSH components priv and listen

and revise the policy to remove any unnecessary flows. Gokyo computes the information

flows in the SELinux policy that violate the policy analysis constraints given the sets of

trusted subjects, excluded subjects, and filter rules. A short introduction to Gokyo is in

Section 3.4.3.

We define a TCB including the system bootstrap components, such as bootloader, ker-

nel and init, and components that modify the SELinux policy itself (e.g., checkpolicy,

load policy, setfiles, etc.) or other objects upon which the system integrity depends (e.g.,

administrative subjects sysadm, staff, rpm, etc.).

We then run Gokyo and identify several information flow conflicts shown in Table 3.1.

The table shows each instance where the target subjects (priv and/or listen) have a read per-

mission on an object that may be modified by untrusted source subjects (write-up subjects);

some objects may be written to by many write-up subjects. The problem then is to find a

resolution that prevents the target subjects from being dependent on the write-up subjects.

For each entry, one of these resolutions is applied in the following order of precedence: (1)

we can EXCLUDE the write-up subject from the system if it is not required on the system;

(2) we can identify that the permission does not actually result in a data dependency (FIL-

TER NO DEP) (for example, the cat program, which simply passes data through), and

so requires only a lightweight filtering interface that prevents only metainformation attacks

like buffer overflows; (3) we can FILTER the use of the permission via a filtering interface;

or (4) we can REMOVE the permission assignment from the target subject or the write-up

subject if not required by the subject.



47

Target Permission Source Subjects Resolution
Subject (object:class) (names or count)

Resolutions requiring primarily system knowledge
priv, listen, ftpd devlog:sock privlog FILTER NO DEP
priv lastlog:file 6 FILTER NO DEP
priv, ftpd etc runtime:file xdm, hotplug EXCLUDE
listen initrc var run:file 7 (includes rlogind) EXCLUDE
listen, ftpd net conf:file dhcpc EXCLUDE
priv, ftpd wtmp:file 7 (includes rlogin) EXCLUDE

Resolutions requiring application knowledge
listen sshd listen:tcp (accept()) [network] FILTER
listen userpty:chr file 7 FILTER
priv sshd priv:unix sshd net FILTER
ftpd ftp port t:tcp (accept()) [network] FILTER
listen sshd listen:tcp (read()) [network] REMOVE
priv xserver port:tcp 165 REMOVE
priv, listen devtty:chr file 200 REMOVE (Used for walk-

through.)
priv,listen port type:tcp [network] REMOVE
listen sshd listen:unix unpriv userdomain REMOVE
listen sshd listen devpts:chr file 5 REMOVE
priv sshd tmp:file (staff/sysadm/user)ssh REMOVE
priv sshd tmp:lnk (staff/sysadm/user)ssh REMOVE
priv sshd tmp:sock (staff/sysadm/user)ssh REMOVE
priv sshd tmp:fifo (staff/sysadm/user)ssh REMOVE
priv system chkpwd:fd 27 REMOVE
priv, listen unpriv domain:fd 33 REMOVE
ftpd ftp port t:tcp (read()) [network] REMOVE*
ftpd nfs t/cifs t:file 27 REMOVE*
ftpd user home:file 4 REMOVE*
FILTER = The permission is necessary, but requires a filtering interface. It should be put in the filtering subject type.
FILTER NO DEP = Similar to FILTER, except that the filtering code need only check metaproperties of the input because the
program does not interpret the data. Since the data merely passes through, there is no dependence on the data.
EXCLUDE = Exclude the source subject from the SELinux policy, as it causes insecure flows; any associated programs must not be
run on the system. Subjects in this group must either be removed or added to the trusted set, which eliminates the illegal flow by
definition.
REMOVE = Remove the untrusted input-enabling permission from the target subject, breaking the information flow.
* = The vsftpd policy did not fully reflect its process structure; see Section 3.5.6 for details.

Walkthrough for shaded row: “priv, listen” indicates that the illegal flows were inputs to both the priv
and listen components of OpenSSH. The object that they have permission to read from is devtty:chr file,
that is, a TTY from /dev/tty. Two hundred untrusted subjects have permission to write to that object.
The illegal flows are broken by removing the read permissions, since they are not necessary: the TTY is
actually read only by the net component, which handles remote user input.

Table 3.1: Information flows to our target subjects (priv and listen for OpenSSH and ftpd for vsftpd)
that may lead to integrity problems. The permissions leading to these flows were identified by the Gokyo
tool. The top half of the table indicates conflicts resolved based on system knowledge. The bottom half
required examining the behavior of the target application using the tools described in Section 3.4.4. Each
target subject was analyzed independently.
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The table groups the resolutions into two categories: (1) resolutions based on informa-

tion flow only and (2) resolutions based on application configuration and information flow.

The decision between removal of permission assignments and filtering generally requires

application knowledge; some permissions are needed to support optional components of

the application and some are needed for core operation. An administrator would need to

decide which options were required on her system and trust the corresponding inputs. 14

of the 20 conflicts require some understanding of the needs of the OpenSSH application.

Next, we recognize that the use of devlog and lastlog does not result in any form of

dependence. They manipulate log data which is not interpreted, for example by rotating

log files.

Finally, we exclude a few write-up subjects from the system if they cause illegal flows

to OpenSSH. This is a judgment call; a sysadmin may decide to trust these subjects instead.

If they are trusted, then they must implement appropriate filtering interfaces. dhcpc is an

example of this as some vulnerabilities have been found for it. For the purpose of our

example, we deem dynamic system extension via hotplug not necessary. We also eliminate

the untrusted subjects that write to the login records of wtmp, such as rlogind.

Only 3 of the 15 remaining read-type permissions are actually needed for operation

in our OpenSSH configuration: the permissions identified by Provos et al for creating the

pseudo-terminal; initiating OpenSSH connections (by listen); and processing user com-

mands via the socket from net to priv. We remove the 12 unnecessary permission assign-

ments. We note that the port type:tcp permission which permits access to most systems

sockets is much coarser-grained than necessary. listen only needs access to sshd listen:tcp

on port 22. We note that the replication of some permissions for listen and priv was unnec-

essary. For example, there is no need for listen to accept requests from net.

Figure 3.1 shows how challenging it can be to get the permission assignments correct

for a given system. The hand-constructed SELinux policy shipped with Fedora Core 4 con-

tained several permissions that needed to be removed. (Our hand-distribution of OpenSSH

permissions to net, priv, and listen did not impact these.) Some, such as for sshd tmp,

enable actions that we do not want in our configuration (e.g., user administration). Oth-

ers, though, are simply mistakes that enable information flows that could compromise the

integrity of our privileged components. While investigating the source of these errors, we
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found that, often, large blocks of permission assignments were made using SELinux con-

venience macros when only a subset were actually needed. SELinux policies only allow

assignment of permissions, not their removal, so we urge policy writers to be careful in

their use of such macros.

3.5.5 OpenSSH Filtering Interfaces

We now describe how we identified which permission assignments to classify as FIL-

TER. First, the OpenSSH application developer needs to find where filtering interfaces are

necessary. A filtering interface is necessary where low integrity data may be input. For

OpenSSH, the interfaces where listen receives connection requests from the network and

where priv receives commands from net are the two obvious cases. However, other in-

terfaces may also require filtering in OpenSSH. To find all filtering interfaces, an analysis

of the SELinux policy is necessary to see if low integrity inputs may be used by other

OpenSSH interfaces.

We use the settraceonerror mechanism described in Section 3.4.4 to test our

configuration against the default SELinux policy to determine if other interfaces besides

the two above require filtering interfaces. We located one: the userpty pseudo terminal

used by priv to communicate with the user shell process.

Next, the application developer must construct effective filtering interfaces. It is the

application developer’s task to build the filtering interfaces and prove effectiveness to the

community. For OpenSSH, the construction of a filtering interface for priv to read com-

mands from net is one of the main tasks in the privilege-separation done by Provos et

al [82]. The interface to accept connections in listen does not have any special filtering per

se, as the connection is not interpreted by listen. Also, the userpty pseudo terminal in priv

is only used to pass data to the remote user from the shell process with an encryption step;

the contents are not examined.

Finally, once filtering interfaces are found, they must be declared to SELinux in order

to use the low integrity permissions. We use the DO FILTER() annotation to declare such

interfaces as described in Section 3.4.2.
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3.5.6 Verifying vsftpd

We applied the same approach to verifying vsftpd; the results are in Table 3.1. One

difference is that the SELinux policy did not reflect the nature of the FTP daemon, which

forks per-connection helper processes in a manner very similar to OpenSSH. Instead, there

was one subject type for all processes. The child processes do drop Linux privileges (versus

than SELinux ones), so they are still largely confined (if a permission is denied in either

model, it is denied to the process). The three starred permissions in the table are those that

should belong to the unprivileged child processes only, not to the trusted server process,

which is why we specify their disposition vis-a-vis the trusted subject type as “REMOVE”.

The interface between the two is a filtered domain socket. The additional violating permis-

sions were eliminated by excluding some of the same excluded subjects as for OpenSSH,

like rlogind and xdm.

3.6 Related Work

3.6.1 Integrity Models

System integrity has been a difficult problem for security researchers over the years.

Most work on integrity has focused on information flow models, supplemented by high

assurance (i.e., formal, validation of program correctness, such as Common Criteria EAL7

evaluation [74]).

The Biba integrity model [12] is essentially a dual of the Bell-LaPadula secrecy model [11],

where information flows from low integrity subjects to high integrity subjects are prohib-

ited. Like Bell-LaPadula, high assurance components are required to overcome restrictions,

but unlike the case for secrecy, illegal (low-to-high) integrity information flows are com-

mon (e.g., user requests).

Attempts in subsequent models have not grappled with the fundamental problem that

low-to-high integrity flows are common. Denning’s work on secure information flow mod-

els [31] models information flows between subjects of different labels as a lattice, but mod-

els illegal flows as any flow that violates the lattice structure. The LOMAC (low water-
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mark) integrity model also prevents high integrity subjects from acting on low integrity

information flows, in this case by downgrading the level of a high integrity subject upon

receipt of a low integrity information flow [39]. The Clark-Wilson model acknowledges

that interfaces are required that can sanitize (or discard) low integrity data, but all inter-

faces must be capable of sanitization (or discard) and the basis for trusting these interfaces

is still high assurance [25]. We are significantly influenced by the Clark-Wilson model’s

view of requirements on interfaces of high integrity processes, though. Lastly, the recent

Caernarvon model allows subjects to span multiple integrity levels such that a subject (i.e.,

process running with an integrity label range) may be able to read from lower integrity data

within its integrity range securely while writing to higher integrity data within its integrity

range [84]. Unfortunately, the integrity ranges must be justified by assurance, where sig-

nificantly broad ranges will still require high assurance. Even after 25 years, we cannot

escape the requirement for high assurance, which places too high a burden on too many

applications to be practical.

More recent work by Li and Zdancewic [63] present a formal type system that cap-

tures intraprogram labeled information flow, with provisions for downgrading of data; type-

checking may be used to ensure information-flow security. One may imagine applying their

method to interprocess flow, which is controlled by a security policy rather than program

source. The DO FILTER() primitive we present may be seen as a downgrading operation

in this context.

3.6.2 Policy Analysis

Several access control policy analysis tools have emerged, particularly in the context

of SELinux. While the early tools mainly supported query handling, recent tools, such as

Gokyo [52], SLAT [50], and Apol [91], now support different kinds of information flow

analysis. For example, SLAT enables verification of particular information flow policies,

and Gokyo identifies and enables resolution of illegal information flows [55]. Understand-

ing information flows is key to achieving CW-Lite integrity.

Brewer and Nash describe [14] a “Chinese Wall” policy which adds a temporal com-

ponent. The motivation for this is the financial industry, where analysts may not access a
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company’s data if they have already accessed the data of a competing company. While they

provide a formal model, they do not describe implementation of a verifier.

Permpoontanalarp and Rujimethabhas [79] describe a method for static verification of

firewall rules with respect to a defined set of desired information flows, and also give a

method of translating desired information flows into rules. They do not present an imple-

mentation of their work.

Fu et al. [42] describe a system for verifying IPSEC/VPN policies. Since ensuring

that only trusted flows reach a target node requires examining the composition of many

upstream nodes’ policies, their algorithm spans machines boundaries.

3.6.3 Whole-system Analysis

While there is widespread agreement that whole-system analysis is desirable, there have

been relatively few efforts that actually do so on widely-used operating systems. Recently,

Chow et al. used hardware-level simulation on a virtual machine in order to perform a

dynamic cross-process taint analysis [24]. By contrast, our work focuses on static analy-

sis to prove certain properties about applications’ information flow rather than infer them

dynamically. Thus, we see our approach as complementary to theirs.

3.7 Summary

Maintaining information-flow integrity is an old and important problem, but as yet an

unsolved one in practice: most administrators have not verified that untrusted users cannot

compromise inputs to trusted programs on their systems. We have developed a way to auto-

matically verify a meaningful information-flow integrity property with very small changes

to existing trusted applications. Because the verification process for system administrators

is automated, it can be easily made an integral part of system maintenance, helping en-

sure that changes to the system’s low-level security policy do not inadvertently violate the

high-level information-flow integrity constraint.

We call our integrity property CW-Lite, since it has the same interprocess dependency

semantics as the well-established Clark-Wilson model, but does not address Clark-Wilson’s
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whole-program formal verification requirement. CW-Lite requires filtering only for un-

trusted input interfaces, as determined by the system’s security policy, and just simple

annotations to existing applications to enable least-privilege enforcement and automatic

verification. Only conflict resolution requires manual effort by the sysadmin. This reduced

goal was chosen to capture most of Clark-Wilson’s utility with low manual effort.

We modified the SELinux access control system to enforce CW-Lite and developed

tools that support the implementation of compatible program. We verified the practical-

ity of our tools by analyzing privilege-separated OpenSSH and vsftpd, finding and fixing

several integrity-violating configuration errors in the shipping SELinux policy.

In the next chapter, we will look at bridging the gap between high-level properties and

low-level in a different way. Rather than focusing on static verification of policies for a

non-interactive mechanism (the OS security monitor), we will try to translate high-level

user actions to a low-level web browser privacy policy dynamically.
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Chapter 4

Doppelganger: better browser privacy

without all the bother

4.1 Introduction

In this chapter we will first look at the challenges facing implementation of a good

browser cookie management system before describing Doppelganger, a novel system which

approaches the problem in a new way that eschews a focus on the cookies themselves in

favor of a privacy-vs.-functionality tradeoff model.

4.1.1 Background

An HTTP cookie is a small data item sent by a web site to a web browser, then sent back

to the originating site on subsequent requests. While the original intent was to provide a

session state mechanism for the stateless HTTP protocol, cookies have since been used

not just for things like shopping carts and authentication, but also for tracking users’ web

surfing habits and building targeted advertising profiles. The result is that site operators or

third parties can gain undesirable insight into users’ habits and browsing history. Cookies

can identify a user at sites where she believes herself to be anonymous and track her actions

across sites and browsing sessions. The problem is exacerbated if web sites can correlate

the collected data to users’ real-world identities.
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Goal Mechanism
Automatically determine useful cookies Mirror user session in hidden browser

window (the fork window) that accepts
additional cookies; look for differences
in output (see Section 4.3.2)

Detect differences in pages Compare page titles; look for user’s
name/ID in mirrored page; see if a click
cannot be mirrored

Determine privacy implications of cookies Parse and interpret site’s P3P policy
Recover from errors Enable additional cookies and replay

user session, using information from the
log (see Section 4.3.3)

Record user session, to enable error recovery Central log of user’s mouse clicks, form
field values, and browser state changes
(START and STOP events for each page
load)

Figure 4.1: Summary of Doppelganger’s cookie management mechanisms.

In particular, third-party cookies (see Section 4.2 for more details) pose significant pri-

vacy risks. Advertising companies such as DoubleClick serve advertisements and web

bugs [5] on various web sites and set persistent tracking cookies when browsers automat-

ically fetch these objects during page rendering. Since the user’s browser will send back

(say) doubleclick.com cookies with every subsequent advertisement and web bug re-

quest, DoubleClick can track users across every site that serves its ads.

Browser vendors are well aware of this problem. To combat it, browsers include settings

to block third-party party cookies [66]. However, the option to block all third-party cookies

is disabled by default in both Internet Explorer and Mozilla Firefox [37], and web sites

employ a variety of tricks such as HTTP redirection [81], inline frames [88], and Javascript

to ensure Web browsers accept their cookies, even when third-party cookies are nominally

being blocked (see Section 4.2.2 for details).

Cookies may also offer substantive benefits to users. The difficulty, therefore, is in

deciding which cookies are worth accepting and which are not. Ideally, a user should

be able to compare the privacy cost of a cookie with the functionality benefit the cookie

enables. Most users are not equipped to make these decisions manually and so accept the
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global defaults in their browsers, which apply to all sites. These defaults tend to err on

the side of functionality rather than privacy; in part, this is because users can tell when

something does not work, but they are not obviously inconvenienced when data about them

is silently gathered. Our goal is to get the best of all worlds: a cookie policy that protects

users’ privacy while simultaneously retaining the desired functionality and, perhaps most

importantly, not pestering users so much that they disable the system.

4.1.2 A solution: Doppelganger

We introduce Doppelganger, a web browser privacy tool to help each user formulate

her ideal cookie policy. Three basic notions underlying Doppelganger’s design are: (1)

users don’t care about cookies so much as privacy and functionality; (2) users don’t like to

be constantly interrupted with questions or alerts; and when this happens, they will tend to

disable or ignore the offending mechanism [47, 99]; and (3) users should not be asked to

do anything manually that can be done automatically.

A corollary is that it is reasonable to expect users to make a small number of high-level

decisions in situations where Doppelganger cannot automatically deduce the correct deci-

sion. In our system, the user needs to know little or nothing about the existence of cookies

per se in order to take advantage of Doppelganger. The principle of using spare resources to

do useful work in the background of interactive applications has been applied more widely

in recent years. For example, the Microsoft Outlook e-mail client can automatically cor-

rect common typos on the fly and the Firefox browser can prefetch pages linked from the

current one. Doppelganger takes this idea one step further and uses client-side parallelism

to explore multiple different possibilities simultaneously.

Doppelganger is a system that, in effect, simulates a world in which the user has ac-

cepted cookies and compares it to the (default) world in which the user has not. If there

is no change in the user’s experience between the two worlds, then we can fairly say that

the cookies are not useful. Thus, Doppelganger essentially creates a hidden twin of the

user who is constantly exploring the value of cookies on the sites the user browses and

who informs the user when accepting cookies may be a good tradeoff; useless cookies are

rejected by default, to preserve privacy. Another key component of Doppelganger is an
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automated error recovery module, which users may invoke with a single click. Error re-

covery attempts not only to correct the cookie policy, but also takes action to restore the

user’s session to a good state, as though cookies had been accepted from the start. In short,

Doppelganger tries to translate high-level browsing actions and decisions into a low-level

policy that closely matches the user’s privacy preferences.

4.1.3 Some implications of our approach

A significant qualitative change in using Doppelganger is the exposure of the costs

and benefits of some privacy decisions. Previous work suggests that: (1) lack of privacy

information (costs), and in particular information in an easily-digestible form, may be a

significant obstacle to achieving good outcomes for users [2]; (2) users are sensitive to

privacy protections, and are more willing to accept a privacy risk if data about them is

protected [29]; and (3) users are willing to compromise some amount of privacy if they are

offered meaningful incentives to do so [51]. These are all issues that our system seeks to

address.

As with most markets, more complete information has the potential to lead to more

efficient outcomes. In this case, that means that users will be able to select those sites that

offer benefits commensurate with the users’ privacy loss over other sites with less favorable

exchanges. Indeed, since subjective feelings of trust in users have been shown to induce

users to accept more privacy costs [23], steps by sites to increase transparency—such as

publishing a useful privacy policy—-may actually increase the amount of usable personal

information they obtain. In short, we believe that systems like the one we describe here

can lead to better incentives for both parties. Thus, while our work here certainly does

not expose all costs and benefits, and only deals with one aspect of online privacy (viz.

tracking), we believe that it represents a meaningful step forward down the right path.

4.1.4 Contributions:

• We introduce Doppelganger, a system for creating and enforcing fine-grained, pri-

vacy preserving cookie policies with low manual effort.
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• We show that Doppelganger improves the handling of third-party cookies in Firefox,

especially with respect to redirection and inline frames.

• We show how to use client-side parallelism to explore multiple cookie policies si-

multaneously and find the right balance of privacy and functionality for each user.

• We leverage concepts from Recovery Oriented Computing [16] to implement an au-

tomated single-click recovery mechanism.

• We present empirically tuned algorithms for recording and replicating user actions.

• We evaluate the effectiveness of Doppelganger in establishing functional and privacy-

preserving cookie policies for typical web browsing habits and compare the results

against those obtained with available browser settings.

We summarize Doppelganger’s cookie management mechanisms in Figure 4.1.

4.2 HTTP cookies

HTTP cookies are a general mechanism for web servers to store and retrieve persis-

tent state on web clients [80, 56, 57]. Since HTTP is a stateless protocol, cookies enable

web applications to store persistent state over multiple HTTP requests. For example, web

shopping applications can use cookies to track which items a user adds to her shopping

cart.

When a client makes a HTTP request to a server, the server has option of including

one or more Set-Cookie headers in its response. Client will return these cookies in

subsequent HTTP requests using the Cookie header. The Set-Cookie header has one

required field, a name/value pair of the form NAME = V ALUE. A web server uses this

field to encode the state information it wishes to store on the client. There are also four

optional fields: expires=DATE, domain=DOMAIN , path=PATH PREFIX ,

and secure.

The expires field indicates how long the cookie is valid. After that date, the client’s

web browser should delete the cookie. If the expires field is omitted, then the cookie is
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called a session cookie and should be deleted when user closes the web browser. Cookies

with an expires field are called persistent cookies.

The domain and path fields indicate for which HTTP requests clients should send

back cookies. To determine which cookies to include with an HTTP request, the client

searches its cookie jar for cookies for domains which suffix-match the domain of the re-

quest and paths which prefix-match the path of the request. For example, if the user requests

the URL http://online.foobar.com/store/index.html, then a cookie with

domain=.foobar.com and path=/store would be included with this request, but

a cookie with domain=pics.foobar.com would not. The same-origin policy in web

browsers prohibits one domain from setting cookies for another. The final optional field,

secure, indicates whether the cookie should be only sent over encrypted HTTPS connec-

tions.

Cookies are also characterized by the context in which they are sent or received. Sup-

pose a user clicks on a link for a particular document, and then the web browser issues a

request for that document. After the browser receives the HTML page from the web server,

it parses the page for references to elements needed to render the page, and issues addi-

tional HTTP request for these elements. Examples of additional elements include images,

Javascript files, stylesheets, Flash objects, and sub-documents. Some of these requests may

be to the same domain of the requested document, but some requests may be to different

domains. The latter is often the case with advertisements.

Browsers differ in their determination of context; content whose URL matches the do-

main of the main page (i.e., the one in the URL bar) is always considered first-party, but

additional elements may be considered first-party as well. For example, Firefox considers

content in IFRAMEs to be first-party regardless of domain. All other elements are in third-

party context. For example, if a user is visiting www.x.com, then content served from

*.x.com is first-party, whereas content on the page from www.y.com, such as an ad, is

third-party. In our system and in our discussion, we do not consider IFRAME content to

be first-party if would not otherwise be.
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4.2.1 Uses of cookies

Cookies have many purposes: session state, personalization, authentication, and track-

ing. Web sites use cookies for personalization to remember users’ preferences and settings.

For example, Google allows users to customize the format of their search results and uses

cookies to remember these preferences. Web sites with user accounts also use cookies to

authenticate users’ sessions [41]: after a user logs in, a web site can also set an session

cookie on the user’s machine to authenticate her subsequent requests. Web sites can set

persistent cookies to remember users and not require a login on subsequent visits. Lastly,

web sites can use cookies to track users and their actions. For example, e-commerce sites

can track customers’ browsing history to make purchase suggestions, and advertising sites

can track users to conduct targeted advertising. However, tracking cookies have troubling

privacy implications. By tracking the pages a web surfer visits, the web searches she makes,

and the items she browses and purchases, web site operators and Internet advertisers can

construct sophisticated profiles of users for targeted advertising, data mining, and informa-

tion sharing with other companies.

Tracking cookies also make cookie management difficult. Many users might prefer not

to accept tracking cookies due to the privacy risks; recent studies [75] have found that about

58% of users have deleted their cookies at some point. To prevent her web surfing habits

being tracked, a privacy-conscious user might decide not to accept or send any cookies,

but blocking all cookies causes a significant loss in functionality on the web. Most web

mail services, e-commerce, and banking sites require users to accept and send cookies for

authentication, and blocking cookies also denies users personalization features. Blocking

all cookies is consequently impractical for most users.

4.2.2 Web browser cookie management

Rather than blocking all cookies, the average privacy-conscious user would probably

be willing to accept some cookies from the web services she derives some benefit from,

but would like to block cookies that compromise her privacy “too much” or provide her

no value. Sadly, web browsers provide few useful options to users who wish to customize

their cookie settings to this end. Users can configure their browsers to accept only first-
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Figure 4.2: Example of a site’s instructions on how to enable cookies. The instructions
for both Firefox and Internet Explorer tell the user to enable all cookies, including third-
party cookies.

party cookies, accept only session cookies, prompt for a decision, and combinations of the

above policies.

These options are inadequate. Accepting only first-party cookies is a good start, since

most web sites do not require clients to accept third-party cookies to operate correctly.

However, current web browsers’ implementations of this policy fall short of expectations.

Advertisers’ IFRAME [88] tricks to violate this policy and cause browsers to accept and

send some third-party cookies. Also, click-tracking services and advertisers use HTTP

redirection [81] to evade third-party cookie blockers. Suppose www.xyz.com hires a

click-tracking service www.trackyou.com to record statistics about its site usage. As

a user navigates www.xyz.com, say by clicking on a link on that seems to point to news

articles on www.xyz.com, the target of the link may actually be something like www.

trackyou.com/redirect?target=www.xyz.com/news.html. The user’s re-

quest first visits www.trackyou.com, enabling www.trackyou.com to record the

request and then redirect the browser to the real target, www.xyz.com/news.html.

However, since first request is for www.trackyou.com, a browser with a first-party only

cookie policy will allow www.trackyou.com to set a cookie on the user’s machine. The

danger here is that if a third site www.abc.com and www.xyz.com both use the same

click-tracker www.trackyou.com, this enables www.abc.com and www.xyz.com

to collude with www.trackyou.com to determine their common users and track their

browsing habits. Furthermore, if a user has an account on either www.xyz.com or

www.abc.com that reveals her real name, this enables both sites to associate her browsing

history with her real identity.
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Accepting only session cookies also seems like a good idea, since it limits the ability of

web sites to track users across browsing sessions. However, blocking all persistent cookies

denies users the option of web site personalization and authentication without logging in or

another more heavyweight solution. In addition, broadband and more effective computer

power management make it convenient for users to leave their computers on and browsers

open for longer time periods. We anticipate these factors will increase the length users’

average browsing session. A session cookie used over the course of a long browsing session

(say, a week) could violate a user’s privacy as much as a persistent cookie.

The only existing option for users who want a fine-grained cookie policy is for the web

browser to prompt the user for every decision. With this policy, when the browser receives

a cookie from a web site foo.com, it opens a dialog notifying the user it has received

a cookie from foo.com, and asks the user whether it should accept the cookie, accept

the cookie for each session only, or block it. The dialog also offers the option to apply

the decision to every cookie from the same domain. Although in theory this mechanism

enables to user to tailor her cookie policy at a fine level of granularity, the usability costs

are severe [66]. First, despite the option for the browser to remember her decisions for

each domain, a user will often receive a barrage of these interruptive dialogs in a browsing

session. Second, although the dialog informs the user that a web site is trying to set a

cookie, the user is given no information on how the cookie will be used by the web site

and must often make policy decisions before she has even viewed the site’s home page.

If a user makes a mistake in her policy (e.g., deciding to block cookies at a site she later

needs authenticator cookies to login), she must navigate several confusing browser menus

(up to three levels deep) to correct her decision. Also, choosing which cookies to accept is

non-obvious. She may know she needs to enable cookies for a particular domain to make it

“work”, but should she enable session cookies or persistent cookies? A user may discover

she must enable cookies after she has already taken a series of actions on the web site. In

the worst case, she must repeat all these actions after she corrects her cookie policy.
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4.2.3 “This site requires cookies”

Web sites do little to help with the cookie management problem. A web site can easily

detect whether a particular user’s browser will accept or deny cookies by using Javascript

or a series of redirects. Many sites require cookies. If a such a site detects the user is

blocking cookies, it will inform the user that she must enable cookies to use the site and

give the user instructions on how to enable cookies. The directions given by many web

sites, however, instruct the user to enable cookies for all web sites, including third-party

cookies. This sort of directive is easy for sites to issue, but can have big consequences for

the hapless user’s privacy not only at that site but every one the user visits. Naturally none

of these negative effects are suffered by the site giving the instructions. Figure 4.2 shows

an example of such instructions. Furthermore, few web sites give users information on how

the site makes use of cookies. Without this information, users cannot easily decide whether

they should accept cookies from the site.

4.2.4 Cookie management: The state of the art

Previous work does little to help users make informed decisions about cookie poli-

cies. Several Firefox extensions try to make the user interface for managing cookies less

cumbersome. Cookie Button [26], BPS Cookie Shield [18], Cookie Toggle [28], and Per-

mit Cookies [78] add toolbars and enable keyboard shortcuts to help users quickly change

cookie policies for the current domain. Add’n’Edit Cookies [4], Cookie Culler [27], and

View Cookies [93] add shortcuts to easily view and delete cookies stored for a particular

domain. Although these tools help alleviate the difficulty and annoyance of navigating the

browser menus to change cookie policies and view previously set cookies, their focus is

still on the low-level mechanism of cookie management, which few users understand and

fewer still know how to manipulate. They do not help users decide the correct policy for a

domain, nor do they cast the problem in more intuitive terms. A much more promising sys-

tem is Acumen [45], which works on social recommendations for accepting cookies; users

are notified how many other users accept the cookies in question. This system does not

protect users’ privacy itself, though, as it does central data collection of users’ choices. It

also does not take into account users’ inability to make good choices without information.
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Figure 4.3: An overview of Doppelganger. Doppelganger mirrors the user’s web session
in a hidden fork session whose only configuration difference is the cookies accepted and
sent. When Doppelganger detects a difference between the contents of the main window
and fork window, it reveals the fork window and asks the user to compare the two (see
Figure 4.6). Doppelganger also maintains a log of the user’s actions for error recovery.

Such a system, with appropriate anonymization, is complementary to ours and could serve

as another line of defense before users are burdened.

The Platform for Privacy Preferences (P3P) Project [90] is a protocol developed by the

World Wide Web Consortium to help inform users of the privacy guarantees of the web

sites they visit. P3P envisions users configuring their web browsers with specifications

of their privacy requirements while surfing the web. Then, when a user visits a web site,

that site will send a compact P3P policy specifying how it uses personal information, and

the browser will determine whether the user’s and site’s policies are compatible. If not,

the browser would inform the user of the incompatibility. P3P seems useful for helping

users make informed decisions about their cookies policies, but in practice P3P has many

problems [22]. Companies have been reluctant to adopt its complicated protocol structure,

policy configuration is cumbersome for users, and the barrage of privacy warnings and

notifications while web browsing becomes burdensome and confusing. Recently, though,

there are more tools for writing and understanding P3P policies [8, 20, 62], and we hope
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that either P3P or some other privacy standard emerges to help us accurately gauge privacy

risks.

Felten et al. have explored techniques to increase users’ peripheral awareness of cookies

and improve their ability to make informed decisions about cookie policies [66]. Their

Cookie Watcher tool notifies users of cookie events and gives some limited information on

the risks of accepting cookies. For example, it notifies users that a third-party persistent

cookie could be used to track users across sites and web browsing sessions. Although

Cookie Watcher may help users understand the risks of accepting cookies from a web site, it

does little to help users evaluate the benefits of a accepting a cookie. Likewise, Bugnosis [5]

alerts users to the presence of “web bugs”—invisible images used for tracking, sometimes

via cookies—but does nothing to mitigate their effect.

4.3 How Doppelganger works

If a user wants to decide whether or not a particular cookie is beneficial, she must

determine is whether the benefit she receives from accepting the cookie outweighs the

attendant privacy loss she suffers. Thus, her ideal cookie policy is one that accepts only

those cookies for which the cost-benefit analysis yields a positive result. Although each

user values privacy risks and functionality gains differently, we want to avoid interruption

when the answer is clear.

To this end, we developed Doppelganger, a web browser privacy tool to help each user

perform this cost/benefit analysis and formulate her ideal cookie policy. Doppelganger’s

main goal is to identify useful cookies and their privacy implications automatically. Dop-

pelganger relies on the following principle to identify useful cookies: if a cookie from

a domain confers some benefit, it should be evident in the user’s experience. If no such

benefit is found, then we may assume that cookies from that site may be blocked.

Doppelganger uses two main techniques to identify cookies beneficial to the brows-

ing experience: mirroring and user initiated error recovery. Network bandwidth and CPU

power have been increasing rapidly, and web browsing clients often have excess bandwidth

and CPU available. We leverage that spare bandwidth and computing power to take a “par-
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tial derivative” with respect to the cookies whose benefit we are trying to measure. When

Doppelganger encounters a domain in the user’s browsing session for which it hasn’t deter-

mined a cookie policy, it mirrors the user’s web session in a hidden parallel session whose

only difference is the cookies accepted and sent. We refer to this hidden parallel session

as the fork window since it represents a forking of the browser state. Correspondingly, we

refer to the cookies speculatively used by the fork window as fork cookies. We show an

overview of Doppelganger’s architecture in Figure 4.3.

When Doppelganger detects a difference between the main window and fork window,

it reveals the fork window and asks the user to compare the two. The benefit of the fork

cookies is any advantageous service present in the fork window which is not the user’s

main browsing window. To evaluate the cost of these fork cookies, Doppelganger provides

the user a condensation of the domain’s P3P policy (if available) and a description of the

kind of tracking enabled by the cookie. Doppelganger records the result and automatically

uses it for future cookie policy decisions for that domain.

The second technique Doppelganger uses to identify beneficial cookies is user initiated

error recovery. The user interface for this error recovery is a single button labeled Fix Me

on the browser status bar. Fix Me is a rewind-and-playback mechanism. Doppelganger

maintains a log of a user’s actions and browser state changes, and invokes the Fix Me

mechanism when the user indicates to the system that something is wrong, perhaps due to

an error message or missing functionality which the mirroring system missed. The idea is

that if a lack of cookies was the problem, then we may enable cookies and replay the user’s

actions, simulating what the user’s session would have been if cookies had been enabled in

the first place enabled.

Doppelganger can operate in three different configuration modes: high paranoia, medium

paranoia, and low paranoia. These modes differ primarily in how Doppelganger handles

session cookies. As we discussed in Section 4.2.2, the privacy risks from most session

cookies are relatively small, but certain session cookies can carry much higher privacy

risks. In low paranoia mode, Doppelganger accepts all first-party session cookies for all

domains, and in medium and high paranoia modes, Doppelganger determines a per-domain

policy for session cookies. In all modes, Doppelganger determines a per-domain policy for

persistent cookies. We discuss these modes and their usability tradeoffs in more detail in
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Section 4.3.4.

We implemented Doppelganger primarily as an extension to the Mozilla Firefox browser

(we used version 1.5.0.2), in about 6000 lines of Javascript code installed independently

from the standard browser. We also made a small (30 line) change to the main C++ source

code, which we have submitted for inclusion into the mainline. Since Doppelganger is

implemented in Javascript, it is portable to any operating system on which Firefox runs.

The primary user interface is limited to the Fix Me button on the browser taskbar. For

debugging purposes, we appended a tab to the LiveHTTPHeaders extension [64], used for

watching HTTP request and response traffic, that enabled us to monitor and configure our

system.

4.3.1 An example

Before discussing Doppelganger in detail, we first present a more elaborate example of

Doppelganger in operation where a user interacts with a fictitious web site www.xyz.com.

To illustrate all of Doppelganger’s features, we assume Doppelganger has been configured

in high paranoia mode, the most conservative configuration mode. At the end of the exam-

ple, Doppelganger will have determined a complete cookie policy for www.xyz.com.

Suppose a user visits an e-commerce site, www.xyz.com, for the first time. The

default policy for the main user window in Doppelganger is to block all cookies. At the

same time, the hidden fork window will also visit www.xyz.com, but will accept (and

send back) first-party cookies from the site, with the aim of deciding whether first-party

session cookies from www.xyz.com are beneficial. For the next few page loads on www.

xyz.com (details, Section 4.3.2), Doppelganger mirrors each user action and form field

value in the fork window (Section 4.3.5); after each page load, Doppelganger compares

the resulting main and fork windows for differences, and alerts the user if it judges them

significant.

Suppose the user adds an item to her shopping cart, an action which requires cookies to

be enabled. The fork window will contain the shopping cart page, but the main window will

remain on the item page (a common failure mode). Doppelganger will detect the two pages
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(a) In the first session, the user must accept session
cookies to add an item to her cart, but Doppelganger
disables them by default. The mirroring process au-
tomatically detects this and offers the user the choice
to switch to the fork browser, which shows the de-
sired shopping cart.

(b) In the second session, Doppelganger accepts session
cookies in the main window per the earlier decision.
The fork window also sends back persistent cook-
ies to test their benefit. Doppelganger finds no dif-
ference between the fork and main windows, so it
assumes persistent cookies are unnecessary and ap-
pends a rule to block persistent cookies to the policy
for xyz.com.

Figure 4.4: Graphical representation of mirroring for the example in Section 4.3.1.

as different, triggering a user-choice dialog.1 Doppelganger displays the primary window

and fork window side-by-side. A dialog box will give an estimation of the privacy risk from

switching to the fork window (the cost) and the user can see what additional features are

offered on the fork side (the benefit; in this case a functioning shopping cart). The user can

then choose one of three options: switch to the fork side and accept the cookies, stay with

the main browser and reject the cookies, or defer judgment and continue mirroring. Let

us assume the user chooses to switch to the fork window, accepting the cookies. Since the

user indicated that first party session cookies provided some benefit, Doppelganger records

the decision to accept first-party session cookies at www.xyz.com for future sessions.

While the user has indicated that first-party session cookies from www.xyz.com have

benefits, Doppelganger still hasn’t determined whether first-party persistent cookies from

www.xyz.com offer any benefits. However, Doppelganger will store first-party persistent

cookies from www.xyz.com from this session in a separate fork cookie space for addi-

tional investigation during the next session. Next, suppose the user ultimately decides not

to purchase the item yet, and closes her browser.

1Low and medium paranoia modes eliminate this dialog box. See Section 4.3.4 for more detail.
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During her next session, she navigates to www.xyz.com again. The browser has

deleted the www.xyz.com session cookies from the previous session, and Doppelganger

is keeping the www.xyz.com persistent cookies aside in the fork window’s cookie space.

To determine if those persistent cookies have value, Doppelganger repeats the mirroring

process again. This time, the main window accepts session cookies as per the earlier deci-

sion, but the fork window not only accepts new session cookies but also sends the persistent

cookies it received before. For our example, let us say that the persistent cookies do not

enable any additional features. After the user has visited a few pages on the site, if Dop-

pelganger does not detect significant differences between the fork window and the main

browsing window, it will decide that persistent cookies are not necessary. Doppelganger

will record the decision automatically and stop the mirroring without any user interaction.

The persistent cookies in the fork window will, however, be retained for future error

recovery if the user later finds that some desired feature does not work. Suppose that the

user had entered some personalization features in her first browsing session at www.xyz.

com which affect the browsing experience in relatively subtle ways that Doppelganger

missed. The user may notice this problem after Doppelganger already made an automatic

policy decision to reject persistent cookies for www.xyz.com. Doppelganger provides the

Fix Me button on the status bar of the main browsing window to recover from these errors.

When the user presses Fix Me while browsing www.xyz.com, Doppelganger rewinds the

user’s browsing session on xyz.com, enables the next most permissive cookie acceptance

policy (in this case, accepting first-party persistent cookies), and automatically replays the

user’s session at xyz.com. The user gets the same final page as when she pressed Fix Me,

but now with any additional benefits of sending the xyz.com persistent cookies received

in the first browsing session. We discuss Doppelganger’s error recovery mechanism further

in Section 4.3.3.

4.3.2 Mirroring

In this section we discuss Doppelganger’s mirroring system in more detail. During a

user’s browsing session, Doppelganger observes all page loads in the main window. When

it encounters a page load for a domain for which it has doesn’t have a complete policy,
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Figure 4.5: An example use of Doppelganger’s error recovery mechanism. Suppose a
decision not to accept cookies was made in the past, but cookies are needed for a shopping
cart feature on a site. Doppelganger does not employ mirroring because it has already
formed a policy. If needed, the user can indicate that cookies may be needed by clicking
the Fix Me button; Doppelganger rewinds to the start of the session at the site, enables
cookies, and replays all the user’s actions without any further user intervention.

it begins to mirror the session in the fork window. Doppelganger mirrors the session by

replicating the user’s main window actions in the fork window and then looking for dif-

ferences between the two. Mirroring user events is non-trivial; we discuss it in depth in

Section 4.3.5. In the rest of this section, we will describe how Doppelganger formulates

cookies policies and how it maintains two separate cookies spaces for the fork and main

windows (Section 4.3.2). We then show how Doppelganger uses the fork window to make

automatic decisions affecting the cookie policy (Section 4.3.2).

Fork window cookie policies and cookie name spaces

Doppelganger formulates cookie policies based on tail domains. Tail domains are the

last two components in the host name of URLs (e.g., yahoo.com).2 Doppelganger applies

the same cookie policy to all cookies and pages matching the tail domain.

Doppelganger enforces one of five possible first-party cookie policies for each tail do-

main D:
2There is much debate over the right way to decide how many trailing domain name components to use;

presently we use a simple heuristic, as do most browsers, to use an additional component for international
TLDs (two letter suffixes).
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Policy Session Cookies Persistent Cookies

P?,? ? ?

PS,? accept ?

PS,P accept accept

PS,X accept downgrade

PX,X deny deny

In the table, “?” means that Doppelganger does not yet know the correct policy for D,

and “downgrade” means that persistent cookies are converted to session cookies.

Doppelganger currently blocks all third-party cookies because we have not encountered

any sites where they provide any benefit, although it is capable of enforcing third-party

cookie policies on a per-site basis. If we discover some sites for which third-party cookies

prove beneficial, we can easily enable that feature3. Note that since Doppelganger enforces

per-site policies, enabling third-party cookies for one site would only allow tracking with

other sites that also had third-party cookies enabled. This is in sharp contrast to browsers’

settings, which have only global policies for third-party cookies.

There is another problem related to third-party cookies: the mechanism Firefox uses

to identify third-party cookies is vulnerable to IFRAME [88] and redirection [81] tricks.

IFRAMEs are entire documents embedded in HTML pages, and for various reasons, Fire-

fox incorrectly determines the context of HTTP requests generated by IFRAMEs. For the

purposes of cookie management, Firefox classifies a IFRAME request as an independent

request for a top-level HTML page rather than request for an element of a larger page.

Therefore, Firefox classifies cookies for IFRAME requests as first-party cookies instead

of third-party with respect to the enclosing page. Doppelganger addresses the IFRAME

problem by more reliably determining the context of a HTTP request by matching its tail

domain against that of the topmost page’s URL. We discuss the countermeasure to redirec-

tion tricks in Section 4.3.2.

In order to send different sets of cookies to the main window and the fork window, Dop-

pelganger partitions the cookie space to allow multiple copies of a cookie with a specific

3Since a site’s context can be out of its control, such as being included in a frame by another site, an
intended first-party cookie can become a third-party cookie. It is uncommon for external documents that are
not advertisements to be put in frames, and many sites do not work properly when framed in any case.
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NAME=VALUE pair and impose different access controls on them. Doppelganger achieves

this by implementing an optional interface in Firefox, nsICookieConsent, designed

for deferring cookie policy decisions to an external module. Its original intention was for

use with P3P, but that functionality has since been disabled. nsICookieConsent was

designed to be applied to classes of cookies at once, since the browser’s controls do not

have provisions for individual cookies. However, Doppelganger must impose differential

access controls according to the particular cookie being set and which window (fork or

main) is using it. Addressing this problem required a small change to the interface and a

small (30 line) change to the main C++ source code to use this new interface.

We then changed each cookie being set by the fork window’s browser by prepending the

string “FORK” to the beginning of the cookie’s name. For outgoing cookies, our callback

filtered the cookie set, allowing only “FORK” cookies for the fork window (and removing

that prefix for the outgoing request), and allowing only non-”FORK” cookies for the main

browser. This strategy let us use the same cookie management interfaces for fork cookies

as ordinary ones, and allowed the browser to handle tasks like removing expired cookies in

the usual way.

Mirroring in the fork window

When the user visits a domain D, Doppelganger checks its cookie policy for D. If it has

a complete policy (i.e., PS,P , PS,X , or PX,X), Doppelganger does no mirroring and simply

applies the policy to the main window. Suppose Doppelganger has no policy for D (e.g., it

is the user’s first visit to the domain). Then the fork window starts sending and receiving

first-party cookies for that domain. Doppelganger mirrors the user’s actions for a constant

number (max steps) of page loads on D and monitors the fork window for differences. If it

detects no difference after max steps page loads, Doppelganger concludes that cookies at

D provide no benefit, stops mirroring, and sets the cookie policy for D to deny all cookies

(PX,X).

Alternatively, if Doppelganger detects a difference, it prompts the user to decide whether

the additional features are worth the privacy risk by attempting to highlight benefits and

display privacy risks. For an example comparison screenshot, see Figure 4.6. If the user
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answers “Keep original”, Doppelganger stops mirroring and sets the cookie policy for D to

PX,X . If “Switch to alternate”, it stops mirroring and sets the cookie policy for D to PS,?.

Recall that PS,? accepts session cookies, but has an undetermined policy for persistent

cookies. Doppelganger then transfers the state of the fork window to the main window to

automatically provide the user the benefit of the cookies. For the remainder of the session,

Doppelganger accepts all first-party cookies from D.

Now, suppose the user closes her browser, restarts it the next day, and revisits D. The

policy for D is now PS,? and the browser may have persistent cookies from D from the

previous session. Since Doppelganger has not yet determined whether persistent cookies

from D are beneficial, it begins to “fork” on these cookies. Doppelganger loads persistent

cookies for D from the previous session into the fork cookie space and clears all of D’s

cookies from the main cookie space. Doppelganger then proceeds as it was when forking

on session cookies, except now, both windows accept session cookies instead of just the

fork window.

The difference is the fork window may have persistent state from the previous session

which positively affects the user’s experience. Doppelganger tries to detect this. Again,

Doppelganger mirrors the user’s actions for a constant (max steps) number of page loads on

D and monitors the fork window for differences. If it detects no difference after max steps

page loads, Doppelganger concludes persistent cookies at D provide no benefit, stops mir-

roring, and sets the cookie policy for D to block persistent cookies (PS,X). Otherwise, if it

detects a difference, it prompts the user for a decision whether the difference is beneficial.

If the user answers “no”, Doppelganger stops mirroring and sets the cookie policy for D to

PS,X . If “yes”, it stops mirroring, sets the cookie policy for D to accept persistent cookies

(PS,P ), and transfers the state of the fork window to the main window.

Presently, max steps is a constant. We want it to be small enough that we do not end up

effectively accepting more cookies via the fork window, but large enough to see differences

due to cookies. Large-scale trials are needed to determine a good value; in testing we set

max steps to 5.
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Figure 4.7: How Doppelganger determines a cookie policy for a domain during the
mirroring process. When Doppelganger detects a difference between the main and fork
windows, it prompts the user to decide whether the additional features are worth the po-
tential privacy risk. Doppelganger makes an automatic policy decision if it does not detect
any differences after max steps page loads. We omit some additional transitions present in
low and medium paranoia modes (see Section 4.3.4).

Difference detection

Doppelganger must be able to detect when the fork and main windows significantly

differ in function or personalization enough to warrant interrupting the user for a decision.

Doppelganger should ignore things like advertisements, randomized placement of news

items, or other sources of natural nondeterminism. In our difference detection algorithm,

we must address a tradeoff: if Doppelganger reports too many page pairs are different,

the user will be asked to make too many decisions, whereas if the system fails to detect

meaningful differences, cookies will be rejected too aggressively and the user must detect

problems manually and initiate error recovery (Section 4.3.3). In both cases the user is

needlessly inconvenienced. At present we use a coarse mechanism: we compare page titles

(to detect obvious errors) and we look for the presence of the user’s name or login ID in the

fork window (and its absence in the main window) to detect personalization. In addition, if

a user action (i.e., click) cannot be replicated in the fork window, we assume the pages are

different. A better heuristic is the source of ongoing work. We do not consider an error in

loading a page as a significant difference; instead the mirroring process re-starts at the next



76

page after re-syncing the fork window to the main one.

Exposing the cost of cookies

Even beneficial cookies carry privacy risks. When Doppelganger detects a potential

benefit of accepting cookies at a domain D, it tries to measure and expose the privacy risks

when it prompts the user to compare the fork and main windows. One measure of the

risk is the type of cookies Doppelganger must enable for the user to benefit (i.e, session or

persistent). We also assess risk by interpreting the domain’s P3P policy, if one exists; we

borrowed some P3P parsing code from [8] for this purpose. Doppelganger represents the

privacy risk with two bars, one derived from the site’s privacy policy, and one representing

the risk from the type of cookie allowed. For an example of Doppelganger’s risk assessment

during a comparison, see Figure 4.6.

Addressing ephemeral site visits

Doppelganger uses a slightly different strategy to address domains which may be visited

often but never for very long. This situation arises in several situations: click-tracking and

advertisement redirect tricks [81] (discussed in Section 4.2.2), certain web portals, and

search engines. Web portals and search engines contain links to other domains that are

the user’s ultimate goal; in the meantime, though, the portals use cookies to track the

user’s actions. Also, shopping search portals use redirects through advertising trackers

(e.g., DoubleClick and Dealtime) which set persistent cookies to track the offsite links that

users follow. All these cookies appear to the browser as, technically, first-party cookies,

but we want to block most of them since they confer no benefit.

The risk is that Doppelganger will perpetually mirror visits to these sites. Since users

will likely never have max steps consecutive page loads on these domains, Doppelganger

will never arrive at a policy decision for them. Doppelganger would therefore invoke the

mirroring process on every visit to these domains to try to determine their cookies’ value,

in effect enabling cookies forever. To address this problem, we maintain a lifetime hit

count for domains with an undetermined cookie policy and set the domain’s cookie policy

to PX,X when the hit count exceeds a constant, max visits. (We are still determining an
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Mode Session Cookie
Policy

Persistent Cookie Policy Notes

Low paranoia Accept all Per-domain Requires least user inter-
action

Medium paranoia Per-domain
(never ask user)

Per-domain Automatically enables
session cookies on POST
or when a difference is
detected during mirroring

High paranoia Per-domain Per-domain Highest privacy; requires
the most user interaction

Figure 4.8: Summary of Doppelganger’s different privacy modes.

optimal value for this constant; in testing, we set max visits to 8.) The end result is that a

policy decision is made for every site after a finite amount of time.

Logins

Doppelganger optimizes cookie management for sites where a user logs in. When

Doppelganger detects a user logging into a domain, it automatically enables session cookies

for that domain. The rationale for this policy is that if a user has a relationship with a

site which requires a login, then accepting session cookies is unlikely to cause additional

privacy loss, and we want to avoid unnecessary user interruptions. Doppelganger detects

logins by looking for form submissions containing username and password fields.

4.3.3 User initiated error recovery

The second major component of Doppelganger is user-initiated automated error recov-

ery. The first line of defense is the mirroring mechanism described above, but Doppel-

ganger’s comparison function may be imprecise, mirroring may end prematurely, or the

user may change her mind regarding the cost/benefit of cookies from a domain. Doppel-

ganger invokes the error recovery mechanism when the user notices some feature is not

working properly, or when she sees a cookie-related error message Doppelganger did not

automatically detect. The user interface is simple: Doppelganger installs a single button
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labeled Fix Me on the browser status bar that the user can click when necessary. Our tech-

niques for error recovery borrow ideas from Recovery-Oriented computing; in particular,

we use the “Three R” model of recovery introduced by Brown et. al [16]: Rewind, Repair,

Replay.

Doppelganger handles recovery differently depending whether it is mirroring a session

or not. If Doppelganger is mirroring a session, it simply uses the mirroring comparison

dialog to show the user what recovery would look like. If Doppelganger is not currently

mirroring a session, it must achieve the same effect. To do this, Doppelganger enables the

next most permissive cookie policy setting (as the fork window would have) and replays

the user’s session at the current site from the beginning by replaying all user-initiated UI

events (e.g., clicks, form submissions). We do not replay across site boundaries.

Of course, strict replaying is not the goal: we want the result to be different (and better).

Doppelganger manages the replay with a state machine which watches page loads and sends

user events. If Doppelganger cannot replay a user event, an expected page does not load,

or an unexpected page loads, Doppelganger stops the replay. Since one of these events

is evidence of a page not present in the original sequence, Doppelganger optimistically

assumes the problem is fixed; since the desired outcome is one that we have not yet seen,

there is no way to know if it is the correct one automatically. If the problem has in fact

not been fixed, the user may click the button again, and Doppelganger will enable the next

most permissive cookie setting (if possible) and replay again. If this, too, fails, then likely

a lack of cookies was not the source of the problem.

There are two problematic cases for replaying. The first is the nonlinearity of many

sessions: what if the user had hit the Back or Forward buttons during the original session?

Our current approach is to replay those buttons (but not Reloads) during the replay as well;

this seems to work in practice. Another case is that of HTTP POST requests. According to

the specification, GET requests, the most common kind, are to be used for idempotent re-

quests, and POST requests for non-idempotent ones like transactions. Although we believe

the danger is low—after all, if the transaction completed, why would the user be invok-

ing the replay?—we do not replay through POSTs. Some sites abuse the POST request for

idempotent actions, which would block the replay. This misuse is bad policy, since it makes

it difficult for users to go back and forward, reduces the effectiveness of proxy servers, and
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reduces the effectiveness of our replay system while making their users do more work to

accept cookies. Others misuse GET requests for non-idempotent actions, which is very

dangerous since the back and forward buttons can easily and inadvertently trigger the ac-

tion again; proxy caching could also break. In short, there are many other reasons for sites

to use these requests appropriately as well.

4.3.4 Higher-privacy modes

Always-on internet connections and more effective computer power management have

conspired to make very long sessions not only possible but easy. Accordingly, we have

implemented multiple modes of operation for Doppelganger, characterized by “paranoia

level”, which have different session cookie policies. Low paranoia mode always accepts

session cookies, and is thus the least intrusive, least private mode. High paranoia never

accepts session cookies by default, using the same mirroring-and-recovery tandem on ses-

sion cookies as on persistent cookies. It is the most (potentially) privacy-preserving, but

most intrusive mode; remember, though, that comparisons only have to be made when a

difference is detected by the mirroring process.

As a compromise between the two, medium paranoia mode uses mirroring, but when

a difference is detected, automatically enables session cookies without asking the user.

Since the privacy risks of session cookies are generally low, the net benefit of accepting

them is likely positive at a domain where the mirroring process detects a benefit, and we

can avoid interrupting the user to make a decision. In addition, medium paranoia mode

enables session cookies when a POST request is seen. A main benefit of medium is that

it automatically denies cookies from tracking sites which are visited using redirection, but

never requires users to make left-or-right comparisons. (If, however the mirroring pro-

cess fails to detect a useful difference, the user may need to use the Fix Me button.) We

summarize Doppelganger’s different privacy modes in Figure 4.8.

4.3.5 Replicating individual user actions

In this section we show how Doppelganger replicates the two dominant types of user

interactions in web browsers: mouse clicks and form submissions. Doppelganger repli-
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cates user actions both during mirroring and during error recovery. In the former case, we

replicate user actions in the fork window immediately as they occur; in the latter case, we

replay a series of actions from the log into the main window. In both cases, the proximate

mechanism of replication is the same, and we describe the algorithms in this section. By

replaying at the level of user actions rather than page loads, relevant Javascript code on the

page is triggered automatically.

Mouse clicks

Replicating clicks turns out to be difficult in practice for two main reasons: document

elements do not have unique IDs, and there is a significant amount of nondeterminism in

what results are returned for a given URL. This latter problem can arise from naturally

changing pages, e.g., news sites and search engines, but this problem also surfaces in ad-

vertisements and stochastic link rewriting for click tracking. The basic click replication

mechanism involves three steps: (1) Record information about the click; (2) Try to find the

matching target in the fork browser; and (3) Send the appropriate click event to the target.

Recording the click Our goal in recording clicks is to capture enough information about

the click that we can replicate it, and to record it in a way that tolerates small changes to

the document in which it is being replayed. Our initial algorithm constructed a path in

the DOM tree from the document root to the clicked element, and tried to reconstruct this

path in the DOM tree of fork window document. This approach failed because it was too

precise: it could not adapt to small perturbations in the document. In the end, we used a

heuristic refined through experimentation.

First, when the user clicks an element, we record some identifying information about

the event:

• The URL of the page in which the click occurred

• If the click was in a frame, the topmost document’s URL

• The HTML tag name of the target of the click (e.g., “DIV”)

• The mouse coordinates of the click (for imagemaps)
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• The element’s attributes (e.g, “href”, “id”, “name”)

• The text content within the element

• If it is a form element, information about the enclosing form

• Which mouse button the user pressed

To be more precise, we do not always record the immediate target of the element; there

may be many HTML fragments of the form ¡pre¿ ¡B¿click here¡B¿ ¡/pre¿ for example, and

the <B> tag is not interesting for a click perspective. Instead, we start backtracking to

the root of the document to find the nearest ancestor of the target element which initiates

some action. For example, if the HTML code reads ¡pre¿<A href=’target.html’><B>click

here</B><A>”¡/pre¿ we would record the click on the A tag, not the B tag. In general,

we stop at elements which have an href attribute, an onclick attribute, or are input

elements of a form. This reduces ambiguity considerably when trying to replicate the click.

Finding a match in the target window When Doppelganger replicates a click on an el-

ement in the source window, a primary challenge is locating the analogous element in the

target window. If the web were static, each request for a URL would yield the same re-

sponse and the task would be straightforward. Instead, there is a fair bit of nondeterminism

in the responses. For example, on news sites, a new article may change the locations of

the previous articles. Some search engines rewrite their search results links to track which

ones are clicked most often. We therefore implemented a “best-match” algorithm, which

compares candidate elements against the information recorded about the original click.

First, we narrow candidates to elements with the same tag name, e.g., “A” or “INPUT”.

We then build a match record for each one, comparing on several characteristics:

• Exact match (index 0)

• The “id” (1), “href” (2), “name” (3), “type” (4), and “value” (5) attributes

• The text content of the element (6)

• Information about element’s parent form (if any) (7)
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Say the candidate element is E; we denote a characteristic of E by E.c where c is, e.g.,

the value of the id attribute. Denote the log-recorded value of c by O.c.

Then we make a match record R as follows: for each characteristic c with index i,

R[i] =


0 : E.c 6= O.c

1 : E.c = null ∧O.c = null

2 : E.c = O.c

Then the best match record is selected by comparing the record values in order, i.e.,

Ri[0] vs. R′
j[0], then Ri[1] vs. R′

j[1], et seq.

If there were ties, it was often because a link’s “href” attribute had been rewritten to

include a unique identifier at the end for click tracking. To break ties, we sorted the candi-

dates by smallest edit distance on the “href” attribute from the original.

Finally, it may be that the best possible match is not in fact a very good match. We

empirically determined a cutoff in match scores and only consider the element a match if it

passes this cutoff.

Mirroring the click After we have correctly identified the element in the target docu-

ment, mirroring the click is relatively straightforward. We construct a click event object

and deploy it to the target element. We also precede each click event with a focus event,

as it would be if the user in fact clicked the mouse on it. This step is important because

many web pages use “onfocus” Javascript handlers to change the page dynamically when

an element is focused.

Forms

In addition to clicks, we must fill in web forms in the target window with the same data

as in the original. Some of the challenges here are similar to the click problem above, in

that forms do not always have unique identifying information such as a “name” attribute. If

the “name” attribute is missing, we use the form’s array index in the document.forms

array; unlike clickable elements, it is unusual for forms to be added and removed by chance.

The form elements virtually always have “name” properties because that is how their values
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are identified when the form is submitted, so identifying them within a form is easy.

There is a more subtle issue here, though, because forms often have hidden fields which

are meant to be unique for each instance. Common fields of this sort are session IDs and

nonces for password protocols. We do not modify the values of hidden form fields; in

practice this has not been a problem since the user is only expected to fill in visible fields

anyhow.

We fill in forms in the target document when replicating each click, not just when the

form is submitted. Correspondingly, we store all form values at the time we record the

click information. This is because Javascript on the page may modify the page based on

the form values prior to submission, sometimes even reloading the page in response.

Other issues with replicating user actions

Frames One complication we encountered in replicating user actions is the presence of

frames. The main idea for handling frames is that many of the above techniques can be

implemented recursively, effectively treating all the frames as one giant page. One problem

that arises is that there can legitimately be elements which are identical, but for which frame

they appear in. Currently, we do not record frame-identifying information with each click,

except to record the enclosing frame’s URL for clicks in IFRAMEs.

Precision Another question is how precise to be in recording and replicating user actions.

Omitting certain frequent events yields an efficiency benefit. So far we have not found it

necessary to replicate each keystroke or mouse movement the user makes, although in

principle these are events that the page can handle and respond to. Most often keyboard

events are used either for scrolling or text entry, neither of which must be replicated at that

granularity4. Mouse movement events generally result in, at most, superficial changes to a

page, e.g., a dropdown menu when hovering over an element. So long as the menu links

are accessible through the DOM for the page, it does not matter if they are visible or not

during replay. If it becomes necessary, we can easily log and replay these events as well.

4Keyboard shortcuts are becoming more common, and we plan to record non-navigation keystrokes in the
future.
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4.4 Evaluation

We evaluated the effectiveness of Doppelganger versus various built-in browser settings

by performing a script of common browsing tasks, summarized in Figure 4.9. In testing, we

simulated a user who is willing to accept a certain amount of privacy loss for convenience

at sites with whom he has a relationship (in this case, Yahoo!, Netflix, and GMail) but is

more cautious at sites with whom he has no relationship (CNN, PC Magazine, Vanns.com,

ComputerHQ.com, BeachCamera.com).

For each setting, we measured (1) the number of sites whose cookies were accepted,

categorized by persistence and context and (2) the inconveniences suffered by the user,

including dialog boxes and lost functionality. An ideal scheme would incur a low number

of each. The five settings we tested were four global settings (same for all sites): (1) All

cookies enabled, (2) First-party cookies only, (3) First-party session cookies only; (4) Ask

the user what to do for each cookie that is sent; and finally (5) using Doppelganger. We

measured the number of sites rather than the number cookies because multiple cookies of

the same type from the same site are equivalent from a privacy perspective. We executed

each script by hand three times consecutively for each setting, retaining any state between

runs. The idea was to capture the effects of session cookies, persistent cookies, and, for

Doppelganger, the change in policy and behavior over time. We cleared all cookie-related

state before changing settings.

The accepted-cookie results are shown in Figure 4.10, and the details of each setting

and its corresponding user experience are described below. Two values are particularly

interesting. The number of sites setting persistent cookies is significant because they allow

users to be tracked over many sessions, and the number of sites setting third-party cookies

is perhaps more so because they let the user be tracked across multiple sites. Third-party

persistent cookies combine the worst of both.

There are three ways in which the user can be “inconvenienced” during our script: he

can be asked to answer a browser’s yes-or-no cookie dialog (see picture); he can be asked

a left-or-right browser decision by Doppelganger (see Figure 4.6); or he can be forced to

login upon each visit to a site where he has an account. This latter case occurs when her

browser could have accepted a persistent cookie that would serve as an authenticator, but
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Site(s) Purpose / actions

Yahoo! Check Yahoo! mail, news, TV
listings

Netflix Research movie reviews

GMail Check email

CNN Read news

Verizon Wireless Research cell phone plans

Google, etc. Research MP3 player purchase

Figure 4.9: Summary of browsing session for evaluation.

did not for some reason. Analysis of these inconveniences for each setting are discussed in

their respective subsections below.

In the following discussion, we use figures from the last session of each setting, as that

most closely represents a steady-state figure.

4.4.1 All cookies

This is the default setting in Firefox, and, perhaps predictably due to its permissiveness,

led to the acceptance of the most cookies of any setting: 24 sites set persistent cookies, in-

cluding 16 in third-party context. Virtually every domain we visited set a persistent cookie

(none sent only session cookies). This suggests that any future browsing sessions would be

extensively tracked. The advantage of this permissive policy was that we were never asked

any questions during the session.

4.4.2 First-party only

Since the danger of third-party cookies was recognized years ago, many users disabled

third-party cookies in their browsers; the size of this group has forced sites to avoid any

dependence on these cookies. Thus a first-party only setting in the browser is, in practice,

a big win over the “allow all” setting. Indeed, we accepted persistent cookies from a little



86

Number of sites setting:

Run FP-S FP-P TP-S TP-P Total persistent
cookies cookies cookies cookies (FP-P + TP-P)

All cookies on (Run 1) 9 8 3 13 21
All cookies on (Run 2) 8 8 3 16 24
All cookies on (Run 3) 8 8 3 16 24
FP only (Run 1) 9 8 1 4 12
FP only (Run 2) 8 8 2 5 13
FP only (Run 3) 8 8 2 7 15
FP session only (Run 1) 9 0 9 0 0
FP session only (Run 2) 9 0 6 0 0
FP session only (Run 3) 9 0 8 0 0
Ask user (Run 1) 4 3 0 0 3
Ask user (Run 2) 3 3 0 0 3
Ask user (Run 3) 3 3 0 0 4
Doppelganger (Run 1) 4 0 0 0 0
Doppelganger (Run 2) 3 3 0 0 3
Doppelganger (Run 3) 3 3 0 0 3

FP = “First party” TP = “Third party” S = “Session” P = “Persistent”

Figure 4.10: Number of sites setting cookies while performing some common tasks.
A script of common browsing tasks was run three times in succession for a variety of
cookie management policies, and we measured the number of sites setting various kinds of
cookies. “First party” here refers to sites that the user intended to visit, and “third-party”
refers to all other sites, such as from third-party images, IFRAMEs, and click-tracking
HTTP redirections.
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more than half as many sites as in the default settting. However, the browser still accepted

many cookies that either do not not confer any benefit or were not worthwhile. These in-

clude persistent cookies from 7 sites we did not mean to interact with; these were accepted

because of redirection and framing tricks. Furthermore, there were unneeded cookies from

first-party sites—8 of them set cookies vs. 3 for Doppelganger—since we did not need

cookies from, e.g., cnn.com. The main advantage of the first-party only setting over

more restrictive ones is that we were not asked any questions.

4.4.3 First-party session only

This setting downgrades all persistent cookies to session cookies with the aim of elimi-

nating long term tracking. It was still vulnerable to tricks which forced us to accept session

cookies from 6 to 9 sites (it varied across runs, because advertisements change) that we did

not mean to interact with. The session-only restriction came with a significant downside:

we were forced to log in to each site with which we had a relationship during every session,

and would have had to do so indefinitely. All personalization features that do not require a

login would also be lost.

4.4.4 Ask the user

The final built-in browser setting we tested was one in which the browser asks the user

whether to accept each cookie as it was offered. This dialog box allowed a decision to

apply to all cookies from the same site, and we checked this box each time to reduce the

number of dialogs.

An example of the dialog box is shown here:

This setting poses something of a dilemma: in principle, we do not know which cookies

to accept and which to deny, especially since most of the dialogs appear before a site’s
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home page even finishes loading. Our solution was to use Doppelganger to determine

which cookies were useful and, thus, always answer questions correctly, including when

to accept persistent cookies and when to downgrade them to session cookies. While this

assumes a somewhat oracular user, it helps put a lower bound on the difference between

Doppelganger and the best-case scenario for existing browser settings.

Unsurprisingly, the Ask setting resulted in a dramatic reduction in the number of ac-

cepted cookies compared with other browser settings: there were only 3 sites which set

persistent cookies, and no third-party cookies were accepted.

There was no loss of functionality with this setting, as there was with the “First-party

session only” setting, but there was a significant problem: we were shown 26 dialog boxes

during our session. Of these, 13 were due to first-party sites, and 13 due to third-party sites

using various tricks. These dialogs presented almost no information to help the user decide

whether to accept the cookie, except for the domain name.

4.4.5 Doppelganger

Our last test used Doppelganger for cookie management, in High paranoia mode. Un-

surprisingly, the cookie results were virtually identical to the Ask policy, since we used

information gained by Doppelganger to answer the browser’s questions during that trial.

The total number of persistent cookies rose from Run 1 to Run 2 because Doppelganger

reserves judgment on persistent cookies until it can test their usefulness in a subsequent

session; ultimately, 3 sites’ persistent cookies were accepted, the same as for Ask.

We did not have to answer nearly as many questions using Doppelganger as we did with

Ask. During the first run, there was a comparison dialog on the netflix.com homepage,

because session cookies were required to use the site. This dialog would not appear in Low

or Medium paranoia mode, since session cookies would have been automatically enabled

(see Section 4.3.4). An error message at verizonwireless.com prompted a click of

the Fix Me button; this solved the problem without further effort; this is not necessary in

Low paranoia mode.

During the second run, yahoo.com, netflix.com, and mail.google.com

(Gmail) all had automatic login features if persistent cookies were enabled. This resulted



89

in side-by-side comparisons, and in each case we chose to accept the cookie in exchange

for the convenience. At verizonwireless.com, a persistent cookie remembered our

zip code, prompting a comparison; we chose not to accept a persistent cookie, because we

did not plan to visit the site often. During the third run, there were no dialogs at all. In-

deed, by that time, Doppelganger had already silently decided not to accept cookies from

cnn.com, pcmag.com, and dealtime.com (a site through which we were redirected

each time we clicked on vendors from pcmag.com).

It is important to note that none of the dialogs we saw would ever recur; once a decision

has been made, it is remembered for future sessions. While the same is true for the Ask

policy, the test script is heavily weighted towards sites the simulated user has a relationship

with. Thus, new sites the user encounters are likely to be ones with which there is no

relationship or which are visited less frequently, and thus where cookies are much less

likely to have value. This is significant because the Ask policy pops up dialogs regardless

of cookie value, while Doppelganger does so only if cookies are likely to be useful, and

in fact shows the user how useful, as well as relevant privacy information. Turning on the

optimization above would make the number of Doppelganger dialogs smaller still.

4.5 Web site countermeasures

If Doppelganger becomes widely deployed, web sites might try to circumvent or fool

Doppelganger’s mechanisms to set cookies or other persistent data on users’ machines.

In this section, we discuss various approaches they might take and how those approaches

affect Doppelganger.

4.5.1 Always require cookies

A web site might require users to always accept cookies by redirecting users to an

error page if it detects cookies are being blocked. Many sites currently do this. However,

addressing this problem only requires Doppelganger to accept session cookies from the

site, which have limited privacy risks; and if the user is using low or medium paranoia

mode, Doppelganger will do so automatically. For very privacy-conscious users in high
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paranoia mode, Doppelganger will expose the sites’ cookies requirements for inspection.

Alternately, web sites might try to require users to accept persistent cookies by requiring an

extensive “sign-up” procedure if it does not detect a persistent cookie on the user’s machine.

This might encourage users to accept persistent cookies to avoid repeating this procedure

on subsequent visits. However, this approach would likely alienate users; privacy conscious

users may not want to accept persisent cookies or might routinely delete all their cookies,

and for privacy reasons, public kiosks and library terminals must delete all cookies after

each user’s session.

4.5.2 Cause spurious differences

A web site might try to always create subtle or inconsequental differences between

pages requested with cookies and those requested without cookies to frequently trigger

Doppelganger’s comparision dialog. A user who receives excessive comparison dialogs

for a site might become annoyed and decide to accept the cookies to prevent future in-

terruptions, or worse, disable Doppelganger entirely. Doppelganger’s current difference

detection algorithm is simple: we compare the page titles and look to see if the user’s

name or ID is only in the fork browser. Developing sophisticated and robust difference

detection is important future research for Doppelganger, and we see two promising direc-

tions. One approach is compare pages structurally by examining their DOM trees. This is

based on the assumption that substantive changes often result in the addition or removal of

whole page elements. Another complementary approach is a visual comparison, comparing

screen captures of the fork and main windows. Both of these approaches require filtering

advertisements and other sources of randomness before comparison.

4.5.3 Other persistent objects

If a web site detects its persistent cookies are being blocked, it might resort to storing

other persistent objects on the user’s machine (e.g., flash objects, images, Javascript) and

retrieving these objects in subsequent sessions. To fully address privacy with respect to

persistent web objects, Doppelganger must apply its cookie policy for a domain to manage

other cached objects from that domain as well. However, there may be well-intentioned
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sites that don’t use cookies at all, but cache web objects on users’ machine to improve

performance. Fully understanding the effect of this approach on the user’s web browsing

experience requires further study.

4.6 Future Work

Doppelganger currently only has mechanisms to incrementally relax cookie policies,

but not make them more restrictive. Users may later change their minds about the cost/benefit

tradeoff for certain domains and want to make their cookie policies for those domains more

restrictive. Exploring usable mechanisms for “tightening” the cookies policy is an area for

future exploration.

We also believe that our approach may be applied in a broader context. Configuring

security and privacy systems can be difficult; oftentimes, the user knows the desired result,

but doesn’t know what policy will achieve it. Automatic exploration of multiple policies

can make that process much easier. In addition, our replay mechanisms can be useful for

web application testing and recovering from other kinds of errors. Ideally, web sites would

be designed to make replaying easier by removing or exposing currently hidden state.

4.7 Conclusion

We introduced Doppelganger, a novel system for creating and enforcing fine-grained,

privacy preserving cookie policies in web browsers from high-level user input with low

manual effort. We showed how Doppelganger automatically identifies cookies which pro-

vide users additional functionality and exposes the costs and benefits of accepting those

cookies. We believe Doppelganger has the potential to greatly increase individuals’ pri-

vacy on web, while retaining functionality and without undue inconvenience.

In the next chapter, we describe a controlled usability study to test the usability and

performance of Doppelganger with ordinary users.
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Chapter 5

Doppelganger usability study

5.1 Introduction

In order to test the efficacy and usability of Doppelganger, we conducted a controlled

usability study which compared Doppelganger against two browser settings: the Default,

allow-all policy, and the Ask policy, which requires user approval for each cookie. The first

of these represents the worst case for privacy, since no cookies are rejected, and the second

represent the potentially best case for privacy since the user can reject every cookie that she

does not want.

The goal was to get both objective and subjective evaluations of these cookie manage-

ment options. We would expect there to be a tradeoff between a few variables: (1) ease

of use, including intrusiveness and ease of decision-making with respect to the mechanism

itself; (2) functionality, which here means that users were able to access all the sites’ offer-

ings that they (the users) wished to access; and (3) privacy, measured in cookies accepted.

We hoped to learn what these were for our three candidates.

Subjective measures include perceived ease of completing the task list for each scenario

and ease of decision making in each. Objective measures includedcompletion rate for each

task and the number of cookies accepted.

The full text of the survey questions and reponses may be found in the Appendices.
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5.2 Setup

5.2.1 Profile of the subjects

Our tests were conducted with the help of the XLab (Experimental Social Science Lab-

oratory) at UC Berkeley, which recruited and scheduled subjects, and provided space and

laptop computers for conducting the study. The XLab maintains a pool of prospective sub-

ject candidates for experiments; subjects can register for the studies online. Per the XLab

protocol, all of the subjects were students, staff, or faculty at UC Berkeley. Subjects were

not selected for any other characteristics. No attempt was made to control for gender or any

particular privacy preference; this choice was justified by the finding by Hann et al. [51]

that users’ willingness to choose one site over another with respect to privacy is unaffected

by all the measured personal characteristics of the user, including gender. (They found that

preferences did vary with site characteristics, however.)

We conducted our experiment with 19 subjects; however, one subject’s data could not

be used due to data corruption, yielding a final total of 18. Subjects were regular users

of web browsers, most browsing for 10-20 hours a week. Tabulated data for these survey

responses is provided in Figures 5.1 and 5.2. They were “somewhat concerned” about their

online privacy in general, and slightly more concerned about tracking in particular. All

the subjects had heard of cookies; 5 had heard of them but didn’t understand how they

work; 9 basically understood how they work; and the remaining 4 had a deeper knowledge,

understanding the differences between types of cookies. All but 4 subjects had taken steps

to manage or monitor their own cookies; this is consistent with findings in a more general

population that show that as many as 58% of users delete their cookies [75], with 40%

doing so each month.

5.2.2 Method

Subjects were given a packet of information that explained what browser cookies are

and the privacy risks that can result from accepting cookies. They were also given a task

list containing the web browsing tasks they would perform. They were instructed to per-

form the entire list three times—three different “scenarios”—each with a different privacy
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Hours Count
0-5 0
5-10 2
10-20 9
20+ 7

(a) “How many hours a week do you use a web
browser?”

Level of concern Count
(1) Not concerned 2
(2) Somewhat concerned 11
(3) Concerned 5
(4) Paranoid 0
Average level 2.2

(b) “On a scale of 1-4, how concerned are you about
your privacy online?”

Level of concern Count
(1) Not concerned 3
(2) Somewhat concerned 8
(3) Concerned 6
(4) Paranoid 1
Average level 2.3

(c) “In particular, how concerned are you about your
browsing habits and actions being recorded by
the sites you visit or by third party sites?”

Figure 5.1: Usability study survey results — General questions
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Choice Count
Not at all 0
I had heard of them, but didn’t really understand how they
work

5

I basically understood how cookies work 9
I understood terms like ‘persistent cookies’ and ‘third party
cookies’

4

(a) “Before this study, how familar were you with web browser cookies?”

Choice Count
Yes 14
No 4

(b) “Have you taken any steps to manage or monitor the cookies in your browser? For
example, have you deleted cookies, examined cookies, or changed your cookie pref-
erences, or used third-party software that did so?”

Figure 5.2: Usability study survey results — Familiarity with cookies

setting. The first scenario used the Default setting, and the second and third used Ask and

Doppelganger in some order. During the browsing session, they were to represent the pri-

vacy preferences of a hypothetical user rather than their own preferences. The task list is

shown in Figure 5.4; the trust levels of the hypothetical user are shown after the site URLs.

After performing the tasks in each of the three scenarios, the users took an exit survey.

During the browsing sessions, we recording screen-capture movies for each user, so we

could review the sessions later if necessary. We also installed an extension in the browser

that recorded the contents of the cookie jar, including session cookies, to a file. This exten-

sion was used in each of the three scenarios.

5.3 Results

5.3.1 Ease of use (tabular data in Figure 5.3).

Subjects indicated that performing the tasks under the Default scenario was quite easy,

averaging 5.8 on a scale of 1 to 6, 6 being “Very easy”. This was to be expected, and

indeed was an intentional study design decision. We did not want the tasks themselves to be
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difficult to perform, so that we could ascribe essentially all the difficulty the subjects had in

the Doppelganger and Ask scenarios to those respective cookie management mechanisms.

Completion of the tasks while using Doppelganger was judged to be somewhat more

difficult than for Default, averaging 4.8, and still more difficult with Ask Me, averaging

3.8. In order to understand what made the latter two settings more difficult, we asked users

a survey question about what they thought of the number and kind of questions they were

asked:

How did you feel about the number and difficulty of cookie management tasks
and decisions you faced in Scenario #2 [or 3]? By “easy” we mean that it was
generally clear which button to push and when, and that you knew the correct
choice for each dialog box. By “difficult” we mean that it was generally unclear
what was the right action in each situation.

1. There were too many tasks (dialogs and button presses) but they were
easy to handle

2. There were too many tasks and they were difficult to handle
3. There were not too many tasks and they were easy to handle
4. There were not too many tasks but they were difficult to handle

Since the primary difference between Default and the other two settings was the dialog

boxes presented to the user, we felt that this question would capture some of the reasons

behind the usability gap. The results were striking:

Setting Too many Not too many Difficult Easy

Doppelganger 2 16 3 15

Ask 16 2 10 8

While users felt that Doppelganger did not impose too many tasks on them, and that

those tasks were easy, they felt quite the opposite about Ask. We may also see how the

ease-of-completion numbers vary with subjects’ answers to these questions:

Average ease (Doppelganger) Average ease (Ask)

Easy 4.9 4.4

Difficult 4 3.3

Not too many 4.9 5

Too many 4 3.6
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Users who had trouble with the decisions in volume or clarity also had a significantly

more difficult time completing the tasks in both scenarios. This suggests that these two

metrics may be good predictors of ease of use.

The distributions of the ease-of-completion numbers for Ask and Doppelganger were

of different shapes (see Figure 5.3). While 12 of the 18 subjects decided that completion

with Ask was “relatively easy” (the rest were uniformly distributed from “very difficult” to

“very easy”), 10 of 18 found completion with Doppelganger to be “easy” or “very easy”.

Only 2 subjects deemed completion with Ask “easy” or “very easy” despite the task list’s

intrinsic ease (as measured by Default). This seems to indicate that Ask is not satisfactory

for a large majority of users, but that Doppelganger may be well suited for a significant

portion of the population.

Subjects were given the opportunity to provide free-form feedback for each scenario in

response to the question “What did you like or not like about Scenario #N?”. Comments

were generally positive for Default; the only criticism offered was by one subject who said

that s/he “did not know which cookies were being accepted by [his/her] browser”. Subjects

were much more critical of the Ask scenario. Several complained about the number of

dialog boxes. Another common refrain was that subjects were confused; they hard a hard

time figuring out what cookies they were enabling, and at the end were not sure if they had

made the right choices. A few noted that the presence of dialogs asking about cookies from

other sites (i.e., third party cookies) was confusing, and they did not always notice when

this happened.

5.3.2 Performance

We measured performance in a few ways: completion of each scenario; whether the

user encountered any problems along the way (even if the scenario was completed); and

the number of cookies accepted.

Every subject was able to complete the Default scenario without any problems. Six

subjects were unable to complete Task 2 (Netflix) using Ask, and 3 were unable to do so

using Doppleganger. In each case the subject had chosen to deny cookies from Netflix,

making it impossible to access the site. This is not surprising, given that Netflix had been
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Ease Count
(1) Very difficult 0
(2) Difficult 0
(3) Relatively difficult 0
(4) Relatively easy 1
(5) Easy 3
(6) Very easy 14
Average 5.8

(a) “How easy was it for you to complete the tasks in scenario [Default]?”

Ease Count
(1) Very difficult 0
(2) Difficult 0
(3) Relatively difficult 2
(4) Relatively easy 6
(5) Easy 4
(6) Very easy 6
Average 4.8

(b) “How easy was it for you to complete the tasks in scenario [Doppelganger]”

Ease Count
(1) Very difficult 1
(2) Difficult 1
(3) Relatively difficult 2
(4) Relatively easy 12
(5) Easy 1
(6) Very easy 1
Average 3.8

(c) “How easy was it for you to complete the tasks in scenario [Ask]?”

Figure 5.3: Survey results — ease of completion. Doppelganger and Ask were the second
and third scenarios; for 10 of the 18 subjects, Ask came before Doppelganger.
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Figure 5.4: Task list used in Doppelganger usability study.

Open the Firefox browser, using the icon corresponding to the scenario you are on.

Task 1: www.excite.com Trust Level: HIGH
Excite.com is a web portal which offers services such as email, news, and stock quotes

0) If you are using Doppelganger, take a moment to look at the lower right corner of your browser. You
should see the FIXME button and a status indicator saying ”Synced”. You can read more about how to use
these in the Doppelganger scenario description, above.
1) Visit http://www.excite.com
2) Log in to an email account (ID: ucbtest; password: gobears)
3) Read the message from Testy McTest (ucbcookie@yahoo.com). Make sure you can see the ”secret phrase”.
4) Return to www.excite.com
5) Find a news article and click it.
6) If you can read the article, then you are done with Task 1.

Task 2: www.netflix.com Trust Level: LOW
Netflix is an online DVD movie rental service
1) Visit http://www.netflix.com
2) Choose ”Browse Selection”
3) Search for the movie ”Shrek”.
4) If you can see the name of the director of ”Shrek”, you are done with Task 2

Task 3: www.weather.com Trust Level: LOW
Weather.com provides weather forecasts and historical data

1) Visit http://www.weather.com
2) Find the forecast for zip code 11217 using the ”Local Weather” box
3) If you see the city name for zip code 11217, you are done.

Close the brower and wait a few seconds. Now, re-open the browser, using the same link.

Task 4: Revisit www.excite.com
1) Visit http://www.excite.com
2) Check your email again, and reply to the message from ucbcookie@yahoo.com. Write ”I’m almost done!”

Task 5: Revisit www.weather.com
1) Visit www.weather.com
2) Find the current temperature for zip code 11217 again.
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marked as having a low trust level, but we should take that into account in interpreting the

cookie numbers, which were deflated relative to subjects that accessed Netflix. Subjects did

not report problems other than their annoyance or confusion with the dialog boxes, which

was much more prevalent with Ask than with Doppelganger (see above).

The accepted-cookies data, shown in Figure 5.5, is revealing. For every type of cookie,

the Default setting allowed the most sites to set cookies by a wide margin, followed by Ask

and then Doppelganger. The Default setting also led to the acceptance of a large number of

third-party sites’ cookies (almost 8 sites on average). Notably, subjects did not allow any

third-party cookies using Doppelganger; this represents a significant improvement, since

even a small number of third-party sites’ cookies can allow tracking at an enormous number

of other sites. The variance was much larger for the Ask setting than for the other two. This

is to be expected given subjects’ confusion about what to do, leading to, in many cases,

arbitrary decision-making. Whereas the flexibility of Ask might lead to large variance

in the real world, since users many have very different preferences, we would expect to

see much less variance in a controlled environment where users were told to represent the

same privacy preferences. That we did not see small variance with Ask, but did see it with

Doppelganger, says a lot about the need to help users make informed choices. Variance in

the Default setting was zero for first-party cookies, which is to be expected: each of the

three first-party sites set as many cookies as it wanted. Third-party variance was due to

randomness in the set of advertisements being displayed.

As we discussed above, in order to do a more fair comparison, we would need to con-

sider the effects of the missing Netflix cookies for some subjects. Since only one site is

affected, and it is first-party, the maximum increases we could see in the averages are 6/18

= 0.33 for Ask in each of the first-party categories, and 3/18 = 0.17 for Doppelganger.

Neither would make a significant difference in our interpretation.

5.4 Discussion

Perhaps unsurprisingly, Doppelganger’s ease of use was rated in between that of the De-

fault setting and that of the Ask setting. Since Doppelganger also performed as well or bet-
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ter than Ask in terms of privacy protection, in every cookie category, we may fairly say that

the Ask setting is dominated by Doppelganger. The remaining question is whether the pri-

vacy protections offered by Doppelganger—and the data suggest that they are significant—

outweigh the usability decline suffered by users in using it relative to the Default setting.

Since users care enough about cookies to take action to manage them, there is reason to

believe that if we offer a reasonable option, users will actually use it.

Comments from the subjects seemed to indicate that they like to see how they are doing;

that is, how their choices are affecting their privacy. A visual feedback may be a solution to

this, perhaps showing the cookie status of the current site, or how many sites’ cookies the

user has blocked. This is particularly useful since information may saved in a non-obvious

way. For example, weather.com remembers the zip code that a user types in using a

persistent cookie, even if the user is asked to re-enter the zip code on future visits. While

there is a “customize” feature that saves users having to re-enter the zip code, in reality it

is likely no worse from a privacy standpoint, since the originally entered zip code is sent

via cookie in both cases. Some method of showing potential risks to the user may increase

users’ willingness to make more privacy decisions.

There were also a few comments that suggested that a better layout of some of the Dop-

pelganger dialogs would be helpful. Our observations of the subjects as they used Dop-

pelganger suggested that its asynchronous, active nature may require better explanations of

what it is doing, as it is doing it.

There were some potential sources of error and uncertainty in our study. First, the

subjects were not representative of the general web browsing population; since all were

affiliated with UC Berkeley, they were likely more educated than average. In addition, it is

possible that more users are needed to confirm our findings. A possible source of bias is that

users were informed that we (the experimenters) were also the authors of Doppelganger;

this may have affected their experience or reports of their experience.

Ultimately, what is really needed is a large-scale, long-term deployment. It is difficult to

predict the steady-state usability of Doppelganger from a one-hour study session in which

the subject is not only seeing Doppelganger for the first time, but may well be learning quite

a bit about cookies and online privacy as well. Nonetheless, we believe that the study made

a fairly good case for the viability of Doppelganger, and users made good suggestions
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that can be used to improve the system. People found it to be significantly more usable

that its privacy-comparable counterpart, Ask; none accepted third-party cookies, while the

majority did accept third-party cookies with Ask. Doppelganger also fared well in some

absolute sense; most users found it “easy” or “very easy” to complete the browsing tasks

while using it.

More data is also needed to assess the Doppelganger’s performance in more demanding

browsing situations where users may have trouble performing tasks even in the Default set-

ting. We also did not evaluate the usability of the replay mechanism in our study, preferring

to focus on the left-or-right comparison mechanism.

5.5 Conclusion

Difficulty in configuration is a significant obstacle to achieving practical security and

privacy. This task assumes two forms: writing down low-level policies that match high-

level needs (translation) and ensuring that a low-level policy meets a high-level requirement

(verification). Both can be challenging to do manually, in no small part because powerful

systems and complex policy configuration languages tend to go hand-in-hand. We do not

want to sacrifice this power and flexibility, but we do want to make it feasible to make sure

that the broad strokes are always right and that making a detailed, personalized policy is

not always painful.

We have explored two systems, respectively tackling the verification and translation

problems. We’ve seen that when it comes to verification of operating system security poli-

cies, defining the security property itself is important: we want a property that is both

useful and amenable to automated analysis. We developed a suitable lightweight property,

CW-Lite, for this purpose, and provided automated tools to verify the property. Additional

tools that we implemented make it easier to debug violations of CW-Lite and easier for

developers to write conforming applications. The net result is that system administrators

can more easily have confidence in the integrity (in an information-flow sense) of their

trusted applications. With Doppelganger, we targeted a wider audience, introducing a

more intuitive and powerful browser cookie management mechanism. Again, formulating
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the problem was central: we recast the abstruse cookie-acceptance decision problem into

a more accessible privacy-vs.-functionality tradeoff. We also tried to make as many deci-

sions automatically as possible, and to automate all mechanical series of actions (such as

replaying sessions after fixing a site’s cookie policy). The results from our own tests and

from a controlled usability study suggest that Doppelganger is very effective at improving

privacy by reducing the number of accepted cookies, and imposes a modest burden on the

user in doing so. Only time and wider testing will show if this burden is above the threshold

at which users will continue to use it in the long term.

It is our hope that these two efforts to mitigate the configuration problem serve as useful

steps in a larger effort to apply the same principles to all security and privacy systems. In

the end, an unusable system is very likely to be an insecure one; it is our belief that usability

is currently the weakest link in the security chain, and that the greatest net rewards are to

be found in improving it.
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Appendix 1: Usability survey questions

1. What is your user number?

2. In which order did you perform scenarios #2 and #3?

Ask Me first, then Doppelganger

Doppelganger first, then Ask Me

3. How many hours a week do you use a web browser?

0-5

5-10

10-20

20+

4. On a scale of 1-4, how concerned are you about your privacy online?

1 (Not concerned)

2 (Somewhat concerned)

3 (Concerned)

4 (Paranoid)

5. In particular, how concerned are you about your browsing habits and actions being

recorded by the sites you visit or by third party sites?

1 (Not concerned)

2 (Somewhat concerned)

3 (Concerned)

4 (Paranoid)

6. Before this study, how familar were you with web browser cookies?

Not at all

I had heard of them, but didn’t really understand how they worked

I basically understood how cookies work

I understood terms like ’persistent cookies’ and ’third party cookies’

7. Have you taken any steps to manage or monitor the cookies in your browser? For

example, have you deleted cookies, examined cookies, or changed your cookie preferences,

or used third-party software that did so?

yes
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no

not sure

8. Were the tasks you were asked to perform similar to ones that you have performed

frequently in the past?

1 (Quite dissimilar)

2 (Somewhat dissimilar)

3 (Similar)

4 (Very similar)

9. Were you able to complete all the tasks in scenario #1?

Yes

No (please elaborate)

10. How easy was it for you to complete the tasks in scenario #1?

(1) Very difficult

(2) Difficult

(3) Relatively difficult

(4) Relatively easy

(5) Easy

(6) Very easy

11. Did you encounter any problems in scenario #1 (even if you completed all the tasks)?

No

Yes (please elaborate)

12. What did you like or not like about Scenario #1?

13. Were you able to complete all the tasks in scenario #2?

Yes

No (please elaborate)

14. How easy was it for you to complete the tasks in scenario #2?

(1) Very difficult

(2) Difficult
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(3) Relatively difficult

(4) Relatively easy

(5) Easy

(6) Very easy

15. Did you encounter any problems in scenario #2 (even if you completed all the tasks)?

No

Yes (please explain)

16. How well do you feel you represented Pat Smith’s trust preferences during Scenario

#2?

Pat’s preferences made no difference to my choices because I ignored them

Pat’s preferences made no difference because I wasn’t sure how to use them

Pat’s preferences made some difference

I represented Pat’s preferences carefully in my choices

17. How did you feel about the number and difficulty of cookies management tasks and

decisions you faced in Scenario #2? By ”easy” we mean that it was generally clear which

button to push and when, and that you knew the correct choice for each dialog box. By

”difficult” we mean that it was generally unclear what was the right action in each situation.

(1) There were too many dialogs and button presses but they were easy to handle

(2) There were too many tasks dialogs and button presses and they were difficult to

handle

(3) There were not too many tasks and they were easy to handle

(4) There were not too many tasks but they were difficult to handle

18. What did you like and not like about scenario #2? For example, ”I found the interface

too difficult to use” or ”The choices presented to me were clear”.

19. Were you able to complete all the tasks in scenario #3?

Yes

No (please elaborate)

20. How easy was it for you to complete the tasks in scenario #3?

(1) Very difficult
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(2) Difficult

(3) Relatively difficult

(4) Relatively easy

(5) Easy

(6) Very easy

21. Did you encounter any problems in scenario #3 (even if you completed all the tasks)?

No

Yes (please explain)

22. How well do you feel you represented Pat Smith’s trust preferences during Scenario

#3?

Pat’s preferences made no difference to my choices because I ignored them

Pat’s preferences made no difference because I wasn’t sure how to use them

Pat’s preferences made some difference

I represented Pat’s preferences carefully in my choices

23. How did you feel about the number and difficulty of cookies management tasks and

decisions you faced in Scenario #3? By ”easy” we mean that it was generally clear which

button to push and when, and that you knew the correct choice for each dialog box. By

”difficult” we mean that it was generally unclear what was the right action in each situation.

(1) There were too many dialogs and button presses but they were easy to handle

(2) There were too many tasks dialogs and button presses and they were difficult to

handle

(3) There were not too many tasks and they were easy to handle

(4) There were not too many tasks but they were difficult to handle

24. What did you like and not like about scenario #3? For example, ”I found the interface

too difficult to use” or ”The choices presented to me were clear”.

25. Do you have any general comments about your experiences or ways we can improve

the privacy management tools you used?



120

Appendix 2: Usability survey responses
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