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Abstract

Computer attackers frequently relay their attacks through a compromised host at an
innocent site, thereby obscuring the true origin of the attack. There is a growing literature
on ways to detect that an interactive connection into a site and another outbound from the
site give evidence of such a “stepping stone.” This has been done based on monitoring the
access link connecting the site to the Internet (Eg. [7, 11, 8]). The earliest work was based
on connection content comparisons but more recent work has relied on timing information
in order to compare encrypted connections.

Past work on this problem has not yet attempted to cope with the ways in which intruders
might attempt to modify their traffic to defeat stepping stone detection. In this paper
we give the first consideration to constraining such intruder evasion. We present some
unexpected results that show there are theoretical limits on the ability of attackers to
disguise their traffic in this way for sufficiently long connections.

We consider evasions that consist of local jittering of packet arrival times (without ad-
dition and subtraction of packets), and also the addition of superfluous packets which will
be removed later in the connection chain (chaff).

To counter such evasion, we assume that the intruder has a “maximum delay tolerance.”
By using wavelets and similar multiscale methods, we show that we can separate the short-
term behavior of the streams – where the jittering or chaff indeed masks the correlation –
from the long-term behavior of the streams – where the correlation remains.

It therefore appears, at least in principle, that there is an effective countermeasure to
this particular evasion tactic, at least for sufficiently long-lived interactive connections.
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1 Introduction

Perpetrators launching network intrusions over the Internet of course wish to evade surveillance.
Of the many methods they use, one of the most common and effective is the construction
of stepping stones. In this technique, the attacker uses a series of compromised hosts as relay
machines and constructs a chain of interactive connections running on these hosts using protocols
such as Telnet or SSH. The commands typed by the attacker on their own host are then passed
along, unmodified, through the various hosts in the chain. The ultimate victim of the attack
sees traffic coming from the final host in the chain, and because this is not the actual origin of
the attack, little is revealed about the real location of the attacker.

An investigator seeking to locate the perpetrator would appear to be stymied by the need
to execute a lengthy and administratively complex ‘traceback’ procedure, working back host by
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Figure 1: Stepping-Stone Monitor

host, figuring out each predecessor in the chain step-by-step (based on whatever log records may
be available at each stepping-stone site). For discussion of the use of stepping-stone attacks in
high profile cases – and the difficulty of unraveling them – see for example [6] or [3].

An alternate paradigm for stepping-stone detection entails the installation of a stepping-stone
monitor at the network access point of an organization (such as a university or other substantial
local network). The monitor analyzes properties of both incoming and outgoing traffic looking
for correlations between flows that would suggest the existence of a stepping stone [7, 11, 8]. See
Figure 1.

This tradition of work has all been concerned with traceback of interactive connections:
traceback of short non-interactive connections is harder and is presently unaddressed in the
literature. Nor do we address it here. However, the interactive traceback problem is of interest,
since there are many tasks that attackers must perform interactively. If the hacker has a goal
beyond just compromising machines for zombies, if he or she really wishes to exploit a particular
site for criminal ends, then the creative exploration and understanding of the newly compromised
site requires a significant amount of human time, and for this one or more interactive sessions
are highly desireable.

Attackers who are aware of the risk of monitors looking for stepping stones can attempt to
evade detection of their stepping stones by modifying the streams crossing the network access
point so that they appear unrelated. Since the stepping-stone hosts are under their control, we
must assume that attackers can arbitrarily modify their traffic in such evasion attempts. A wide
spectrum of possible evasions might be considered; in the worst case, the information the attacker
truly wishes to transmit could be embedded steganographically in connections that appear to
be quite unrelated, both as regards content and traffic properties. On the other hand, such
evasions might be very inconvenient to design, implement and use. It is of considerable interest
to understand how well the various evasion techniques can work, and under what circumstances
they can be defeated by monitoring techniques – particularly the ones that are easiest to deploy.

In this article we consider evasions based on keeping within the Telnet/SSH connection
paradigm – which is obviously the most convenient for the attacker – and simply modifying the
traffic being handled through the Telnet or SSH connections. We discuss a class of evasions to the
monitoring techniques based on local timing perturbations, in which the stepping stone simply
adds delay in more or less random amounts to traffic crossing the stepping stone. However, we
assume that there is a maximum tolerable delay that the attacker is willing to introduce (since
humans are not able to work effectively over interactive connections with very long latencies). We
give a theoretical result that such packet conserving evasions are ineffective against appropriate
correlation based on multiscale analysis using wavelets, at least in the limit of long connections.

We then consider the case of attackers who add extra packets into their connection, but still

2



wish to have it look interactive. Again, we show that for long enough connections, it will be
possible to correlate the two connections despite the added packets.

This suggests that the attacker wishing to evade stepping stone detection would be ill-advised
to rely solely on local timing jitter or addition of chaff packets to connections. Based on our
analysis, it appears that the most likely approach will require abandoning connection chains that
use only standard interactive protocols, such as Telnet or SSH, for more sophisticated schemes,
that can steganographically add traffic to connections that look like something else. These tools
will be correspondingly harder to install and use. However, we also note that our results are
primarily asymptotic, and require further analysis to determine the degree to which attackers
can still evade detection within the framework by keeping their connections sufficiently short.

2 Previous Approaches

Staniford and Heberlein (1995) [7] initiated the literature of stepping-stone detection by consid-
ering chain-of-Telnet connections, in which the content is transmitted in the clear, and therefore
could be statistically analyzed. Their approach was to tabulate character frequencies during
set time intervals over all Telnet connections into and out of a domain, and to compare the
tables of character frequencies looking for suspiciously good matches. As a technical feature,
they used statistical analysis tools (principal components) to reduce the dimensionality of the
feature vector, enabling rapid comparisons of features of different connections.

The increasing use of SSH and other encrypted modes of communication in recent years
makes it important to develop a tool which does not require access to the actual transmitted
content. Zhang and Paxson (2000) [8] developed an activity-based rather than content-based
approach, which in particular could be used with chain-of-SSH connections. Their approach
was based on the observation that interactive sessions have a strong “on–off” structure. Given
this, one can then monitor the “off” periods of connections looking for suspicious coincidences
of connections making nearly simultaneous transitions to an “on” period. They developed and
on-line algorithm for looking for stepping stones and showed they could do this in practice at a
large site (though it turned out that most of the stepping stones found were innocent).

Yoda and Etoh (2000) [11] also considered the problem of comparing interactive network
connections that might be encrypted and they too relied on timing properties of the connection.
However, they based their approach on looking at the average time lag between one connection
and another, minimized over possible time offsets. They developed a quadratic time off-line
algorithm for doing this comparison, and showed at least a preliminary ability to discrimate
stepping stones pairs from unrelated connection pairs based on a threshold of about three seconds
for the average delay between connections.

The mechanisms developed by Zhang/Paxson and Yoda/Etoh are both vulnerable to attack-
ers perturbing the timing structure of their connections in order to defeat the stepping stone
detection. In this paper we demonstrate that, for some types of perturbations, such vulnerabil-
ities do not appear fundamental.

3 Next Generation Evasions

Existing approaches to detecting stepping-stones are subject to evasions, and the purpose of this
paper is to analyze the capabilities of some of these evasions. The central issue is that attackers
will have available the ability to effect stream transformations on the hosts in a stepping-stone
chain, altering the relays from performing pure ‘passthru’ to instead modifying the stream in
some way.

For example, in a Unix context, one could introduce filters for “chaff embedding” and “chaff
stripping.” Imagine a filter 〈enchaff〉 that merges the standard input with meaningless ‘chaff’
input from another source, so that the standard input content comprises only a sub-sequence of
the output stream; 〈dechaff〉 extracts the embedded meaningful sub-sequence; and 〈passthru〉
simply copies standard input to standard output. By chaining together such filters, one can
conceptually arrange that the content transmitted over the connection incoming to a site will
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not obey the sequencing and volume relationships of the outgoing connection, even though the
semantic content is identical.

In fact, writing such filters in Unix is not quite trivial, due to buffering and pseudo-tty issues.
But clearly they are realizable without a great deal of effort. Accordingly, we need to consider
the possible impact of stream transformations used to evade stepping-stone detectors.

In short, the challenge for the next generation of stepping-stone monitors is to detect corre-
lated activity between two streams when

• One or both streams may be transformed

• It is not possible to examine content for correlations

4 The Constraint Hypothesis

Our research began with the hypothesis that, while arbitrary stream transformations might
conceivably be very effective at evading detections, certain constraints on interactive sessions
might prevent the use of effective transformations.

For interactive connections, we argue for the following two constraints:

• Latency constraints. Ultimately, the chain of interactive connections is tied to a human
user, for whom it will be annoying/tiring/error-prone to have to wait a long time for the
results of their typing to be echoed or processed. Hence, we posit a maximum tolerable
delay limiting what a stream transformation can impose; anything longer will be just too
painful for the user.

• Representative traffic. Typing (and “think time” pauses) by humans manifests certain
statistical regularities in the corresponding interpacket spacings, sharply distinct from
machine-driven network communication. In particular, interpacket spacings above 200 msec
(the majority) are well-described as reflecting a Pareto distribution with shape parameter
α ≈ 1.0 [9]. A stream transformation which upsets this regularity can in principle call
attention to itself and become itself a source of evident correlation between ingress and
egress connections.

We can summarize these constraints as: (i) the original stream and its transformation must be
synchronized to within a certain specific maximum tolerable delay, and (ii) the stream interarrival
times must have the same distribution as the universal Pareto distribution described above.

This second constraint is particularly powerful. It seems difficult to add chaff to a stream
without destroying invariant distributional properties, so in most of the remainder of this paper
we consider schemes which do not add chaff. That is, we consider transforms that conserve
character counts: each character in one stream corresponds to one character in the other stream.
Such conservative transforms can only alter the interarrival times between items in the input
stream and the output stream, and can be thought of as simply jittering the times to mask the
similarity of the two streams.

We must, however, note an important caveat regarding constraint (ii), which is that the
Pareto distribution emerges as a general property when we analyze the statistics of many in-
teractive interpacket times aggregated together. However, the variation in the distribution seen
across different individual interactive sessions has not yet been characterized in the literature.
It is possible that sufficient variation exists such that an attacker could inject chaff that signifi-
cantly alters the distribution of the interpacket timings without an anomaly detector being able
to flag the altered distribution as anomalous. With that possible limitation in mind, we now
investigate what we can do to thwart evasion if in fact that the attacker cannot pursue such
alterations. Later, we will return to the issue of detecting correlations despite the addition of
chaff.

Assuming that the attacker is confined to conservative transforms, can they actually be used
to hide the common source of two streams? To answer this question, we now examine possible
evasion transforms that conform with the above assumptions.
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Figure 2: Divergence of Independent Streams. The two cumulative counting functions diverge
arbitrarily as time progresses.

One aproach is to use a transform which re-randomizes interarrival times. In words, we take
a stream and ‘strip it’ of its identity by changing all the inter-keystroke times to a stochastically
independent set of inter-keystroke times. Formally,

• Stream 1 contains Characters c1, ..., cn at Times t1, ..., tn.

• Stream 2 contains the same Characters c1, ..., cn, at Times u1, ..., un.

• The interarrival times ti − ti−1 are known to be independent and identically distributed
(i.i.d.) according to a known distribution function F .

• Stream 2 is defined by interarrival times (ui − ui−1) which are also i.i.d. F , independently
of (ti).

This approach certainly removes all correlations between the two streams, but has two major
flaws. First, it is not causal: it is possible that ui < ti for certain characters i and ui′ > ti′

for other characters i′, while properly speaking, one of the streams must occur strictly after the
other. (Which one occurs after the other depends on the monitor’s location with respect to the
position of the transformation element.)

It might appear that the difficulty with causality can be addressed by conceptually shifting
the transformed stream in time by a fixed amount, preserving its distribution but ensuring that
we always have ui ≥ ti. But a second problem remains: the two streams become unboundedly
out-of-sync. Indeed, the difference between the two cumulative counting functions behaves as a
random walk, and so we know from simple probability calculations that for this scheme, |tn − un|
fluctuates unboundedly as n → ∞, and that V ar (tn − un) ≥ constant · n (essentially because
tn − un is a sum of n i.i.d. random variables). It follows that for any given buffer length,
eventually the delay between the two streams will surpass that length; and that for any tolerable
perceptual delay, eventually the delay caused by the transcoding will exceed that length. In
summary, transcoding to remove all correlations leads to complete desynchronization over time,
violating the maximum tolerable delay constraint.

The point is illustrated in the figure 2, which shows a simulation of the transformation
discussed above, where keystroke arrivals are drawn from the empirical distribution given in [9].
We can see that after about 5,000 symbols, the two streams are about 500 characters out of
sync.

How about partial randomization of keystroke arrival times? Consider the following local
jittering algorithm, which we call dyadic block reshuffling. Given Stream 1 with arrival times ti,
this approach creates Stream 2 with arrival times ui that never differ from those in Stream 1 by
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Figure 3: Dyadic Block Reshuffling. Row of ‘x’: arrival times in original stream. Row of ‘o’:
arrival times in transformed stream. Black Boxes: equi-spaced blocks of time. There are just as
many times in each block for each stream. Times in transformed stream are chosen uniformly
at random within block
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Figure 4: Non-divergence of streams under dyadic block reshuffling

more than a certain specific guaranteed amount, but which are completely independent at fine
levels. The approach has the following general structure:

• For dyadic intervals [k2j , (k + 1)2j), N1
j,k in Stream 1, compute arrival counts N1

j,k.

• For a given ‘scale’ j0, create Stream 2 so that N2
j,k = N1

j,k, for all j ≥ j0, all k.

• Method: identify all arrivals in Ij,k and select random uniform arrivals in same interval.

The approach is illustrated in figures 3 and 4. The first one depicts the algorithm operating at a
specific medium scale j0: This sort of local shuffling does not suffer from de-synchronization; as
figure 4 shows, the two cumulative character counts functions cross regularly, at least once for
each box.

However, the constraint which is responsible for this crossing mechanism – N1
j,k = N2

j,k at
scales j ≥ j0 – says also that on sufficiently coarse scales the two counting functions agree, so
there are measurable correlations between the two streams. We are confronted by a tradeoff:

• Pick j0 at fine scale – we get tolerable delay but high correlation

• Pick j0 at coarser scale – we get worse delay but reduced correlation.

Is this tradeoff inevitable? For example, are there local jitterings which are more cleverly
constructed and which avoid such correlations?

We can formulate our central question in the following terms. Let N1(t) be the cumulative
character counting function on the untransformed stream:

N1(t) = # of symbols in Stream 1 on [0, t)

and similarly let N2(t) be the character counting function on the transformed stream. Our earlier
discussion imposes specific constraints on these functions:
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Figure 5: Some wavelet waveforms: a) ‘wiggle’ (Mother Haar Wavelet); b) ‘bump’ (Father Haar
wavelet); c) Mother S8 Symmlet; d) Father S8 Symmlet

1. Causality. Characters cannot emerge from the transformed stream before they have
emerged from the original stream. I.e., we must always have:

N2(t) ≤ N1(t).

(The ordering of the inequality here is a convention; we could as well impose the reverse
inequality, since, as discussed above, the direction of the causality between the two streams
depends on the location of the monitor with respect to the transformation element.)

2. Maximum Tolerable Delay. Per the previous discussion, owing to human factors characters
must emerge from the second stream within a time interval ∆ after they emerged from the
first stream:

N2(t + ∆) ≥ N1(t).

We then ask:

1. Do Causality & Maximum Tolerable Delay combine to imply noticeable corre-
lations between properties of stream 1 and stream 2?

2. If so, what properties should we measure in order to observe such correlations?

5 Main result

Our principal result is a theoretical one, showing that multiscale analysis of stream functions
Ni will reveal, at sufficiently long time scales, substantial correlations. To make this precise,
we introduce a systematic multiscale machinery. Good references on multiscale analysis and
wavelets abound, but we are particularly fond of [4, 5].

To begin, we fix a wavelet ψ(t) which is either a ‘bump’ (like a bell curve) taking only positive
values or a ‘wiggle’ taking both positive and negative values. See Figure 5 for some examples of
each. We form a multiscale family of translates and dilates of ψ

ψa,b = ψ((t − b)/a)/ap

Here the parameter p controls the kind of analysis we are doing. If ψ is a ‘bump’, we use p = 1;
if ψ is a wiggle, we use p = 1/2. (The rationale for the different choices of p is given in the
appendix.)
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Figure 6: Scale/Location Families: ‘bumps’ and ‘wiggles’ at various scales and locations

For computational reasons, we limit ourselves to a special collection of times and scales: the
dyadic family a = 2j , b = k · 2j . We can then use the fast wavelet transform to rapidly compute
the wavelet coefficients of each stream function Ni, defined by

αi
j,k = 〈ψa,b, Ni〉

where 〈f, g〉 denotes the inner product

〈f, g〉 =
∑

t

f(t)g(t).

When the wavelet is a ‘bump’, these are also called ‘scaling coefficients’; when the wavelet is a
‘wiggle’ these are commonly called ‘wavelet coefficients’. See Figure 6.

With this machinery, our central question becomes: if N1 and N2 obey the causality/maximum
tolerable delay constraints, how similar are α1

j,k and α2
j,k? In essence, we are analyzing the char-

acter counting functions of both streams across different time scales, looking for how similarly
the character arrivals cluster at each time scale.

Our analysis follows two specific branches, depending on the choice of ψ.

• Analysis by Multiscale Block Averages. Here we choose ψ to be a very simple ‘bump’ –
actually the “boxcar” function ψ(t) = 1[0,1] depicted in Figure 5, panel (b). As indicated
above, we choose p = 1, and it then turns out that the coefficients amount to simple
averages of the data over blocks of various lengths and locations. Accordingly, we call this
choice of ψ as corresponding to the analysis of “multiscale block averages.”

We analyze the stream functions Ni(t) via the dyadic boxcar family

ψj,k(t) = ψ((t − k2j)/2j)/2j .

How similar are α1
j,k and α2

j,k?

Our strategy for analysis is to estimate two quantities at each scale level j:

– The typical size of α1
j,k at scale j; and

– The maximal deviation of α1
j,k − α2

j,k at scale j.

We then compare these, and it will turn out that at long scales the deviation term is small
compared to the typical size. Using analysis developed in the next section, we can then
reach the following conclusions, explained here for the case of a Poisson input stream,
where the analysis is simpler.

Suppose that N1(t) is a Poisson stream at rate λ. Then
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– α1
j,k ≈ λ ± OP (1/

√
scale), where OP () denotes the asymptotic order in probability.

– |α1
j,k − α2

j,k| ≤ OP (log(scale)/scale)

– |α1
j,k − α2

j,k| 	 |α1
j,k|, at long time scales.

In words, the scaling coefficients of the two streams must be very similar at long time
scales.

• Multiscale Block Differences. Here we choose ψ to be a very simple ‘wiggle’ – actually
the Haar wavelet ψ(t) = 1[1/2,1) − 1[0,1/2) depicted in Figure 5, panel (a); this is a simple
difference of boxcars. As indicated above, we therefore choose p = 1/2, and it then turns out
that the coefficients amount to simple scaled differences of averages of the data over blocks
of various lengths and locations. Accordingly, we call this choice of ψ as corresponding to
the analysis of “multiscale block differences.”

We analyze the stream functions Ni(t) via the dyadic Haar family

ψj,k(t) = ψ((t − k2j)/2j)/2j/2.

How similar are α1
j,k and α2

j,k?

Our strategy for analysis is again to estimate two quantities:

– The typical size of α1
j,k at level j; and

– The maximal deviation of α1
j,k − α2

j,k at level j.

We then compare these and find that at long scales the deviation term is small compared
to the typical size.

We reach the following conclusions, again in the case of a Poisson input stream.

Suppose that N1(t) is a Poisson stream at rate λ. Then

– α1
j,k ≈ OP (1/

√
scale).

– |α1
j,k − α2

j,k| ≤ O(log(scale)/scale)

– |α1
j,k − α2

j,k| 	 |α1
j,k|, at long time scales.

(The last two are identical to the results for the boxcar ‘bump’; the first differs by the
absence of the λ term.) In words: the wavelet coefficients of the two streams must be very
similar at long scales.

This simple analytical result indicates, as we have said, that character-conserving stream
transformations which maintain causality and maximum tolerable delay, must also maintain
correlations between streams at sufficiently long time scales.

As stated so far, the result applies just to Poisson input streams. In the appendix we discuss
extending the result to Pareto streams. This extension is of significant practical import, because
the Pareto distribution, which as a model of network keystroke interarrivals is well supported by
empirical data [9], is radically different in variability from the exponential distribution.

6 Analysis

In this section we develop some of the machinery used to support the results outlined in the
previous section. Our first analytical tool for developing this result is a simple application of
integration by parts. Let Ψ = Ψ(t) be a function that is piecewise differentiable and which
vanishes outside a finite interval. (This condition holds for both the Boxcar and the Haar
wavelets). Then from integration by parts

∫
Ψ dN1 −

∫
Ψ dN2 =

∫
Ψ d(N1 − N2) = −

∫
(N1 − N2)(t)dΨ(t)
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so
∣∣∣∣
∫

Ψ dN1 −
∫

Ψ dN2

∣∣∣∣ ≤ TV (Ψ) · max {|(N1 − N2)(t)| : t ∈ supp(Ψ)}

where supp(ψ) – the support of ψ – the part of the t-axis where ψ is nonzero; and TV (Ψ) – the
Total Variation – is informally the sum of all the ups and downs in the graph of Ψ; formally, for
a smooth function Ψ(t), TV (Ψ) =

∫
|Ψ′(t)|dt, while for piecewise smooth functions, the total

variation includes also the sum of the jumps across discontinuities.
Our second analytical tool has to do with properties of extreme values of stochastic processes.

Causality and Maximum Tolerable Delay imply that

N1(t) ≥ N2(t) ≥ N1(t − ∆)

hence,

|N1(t) − N2(t)| ≤ N1(t) − N1(t − ∆)

and so

|N1(t) − N2(t)| ≤ max {N1(t + ∆) − N1(t) : t, t + ∆ ∈ supp(Ψ)} .

In words, the difference between N1 and N2 is controlled by the volume in N1. We now use
results about extremes of Poisson processes. If N1 is the set of cumulative arrivals of a Poisson
counting process, then

max {N1(t + ∆) − N1(t) : t, t + ∆ ∈ [a, b]} ≤ OP (log(b − a)) · E{N1(t + ∆) − N1(t)}

For more details see [2] and [1].
Based on these two analytical tools, we can easily obtain the results in the previous section:

• Calculation for Multiscale Block Averages. This is based on the following ingredients. First,
symbols emerge at Poisson arrival times t1, . . . , tN , with rate λ. Second, the ‘bump’ has
mean 1 and so E[α1

j,k] = λ (as one might guess). Third, V ar[α1
j,k] = Const ·λ/scale, which

is the usual 1/n-law for variances of means. Consequently, the random fluctuations of the
scaling coefficients obey

α1
j,k ≈ λ ± c/

√
scale

To calculate the maximum fluctuation of α1
j,k − α2

j,k, we observe that TV (ψj,k) ≤ 4/scale
and sup{N1(t+∆)−N1(t) : t ∈ [a, a+ scale]} = OP (log(scale)), giving the key conclusion
|α1

j,k − α2
j,k| ≤ O(log(scale)/scale).

• Calculation for Multiscale Block Differences. Again we assume that symbols emerge at
Poisson arrival times t1, . . . , tN , with rate λ. Second, the ‘wiggle’ has mean 0 and so
E[α1

j,k] = 0 (again as one might guess). Third, V ar[α1
j,k] = Const · λ/scale, which is

the usual 1/n-law for variances of means. Consequently, the random fluctuations of the
wavelet coefficients obey

α1
j,k ≈ ±c/

√
scale

The calculation of the maximum fluctuation of α1
j,k−α2

j,k is as for multiscale block averages
above.

We again note that this analysis, as it stands, applies only to Poisson streams. Further
analysis, given in the appendix, indicates that the same type of analysis can apply to Pareto
streams and many others as well.
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Figure 7: LIS Transform: Row of ‘x’ – arrival times in original stream; Row of ‘o’ – arrival times
in transformed stream; vertical lines demarcate zones of 8 characters; top group of horizontal
lines – lengths depict inter-keystroke times; bottom group – lengths depict same times, but
shuffled within one zone. Note, the bottom set of boxes should be shifted in time over to the right
by ∆; this will be fixed in the final version of the figure.

7 Simulation

To illustrate the above results, consider a simple transcoder: local inter-keystroke shuffling (LIS).
This transcoder works as follows. We buffer symbols for M consecutive symbols or ∆ millisec-
onds, whichever comes first. Suppose that the times of the symbol arrivals into the incoming
stream buffer are t1,..., tm, so that necessarily m ≤ M and tm − t1 < ∆. We then compute the
interarrival times of the symbols in the buffer, δ1 = t2 − t1, δ2 = t3 − t2, . . . , δm−1 = tm − tm−1.

Given the number δ1, . . . , δm−1, we perform a random shuffling of the times, obtaining
ε1, . . . , εm−1. Then we define a second set of times by

u1 = tm, u2 = u1 + ε1, . . . ui = ui−1 + εi−1, . . . ,

and we output symbols in the second stream at times ui (we ignore here the processing time
required for calculating the ui, which is surely trivial in this case). Figure 7 illustrates the type
of transformation obtained by LIS.

A new stream synthesized by LIS has these properties:

• Identical Distribution. Whatever the underlying distribution of inter-keystroke times δi

associated with (ti), the new stream (ui) has inter-keystroke times with the same distri-
bution, because the actual inter-keystroke times are just the same numbers arriving in a
different order.

• Causality. Characters arrive in Stream 2 later than Stream 1

ti ≤ ui

• Controlled delay. Characters do not arrive much later in Stream 2:

ti < ui < ti + 2∆.

Thus, there is no possibility that a statistical traffic anomaly detector can have cause for flagging
a stream 2 produced by LIS as aberrant traffic. Also, by controlling the parameter ∆, we control
the maximum tolerable delay.

To study the properties of multiscale detectors in the LIS setting, we use Monte-Carlo sim-
ulation. In our simulation experiments, we used for (ti) samples from the empirical distribution
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of inter-keystroke times described in [9]. We created a stream several minutes in length and we
transcoded this stream three times at three different delay parameters: 100 msec, 200 msec, and
300 msec.

From the streams, we created time series. We selected 256 second stretches of each stream,
divided the time axis into 1/64th second intervals, and we counted the number of character
arrivals (always 0 or 1, of course) within each interval. This gave us equally spaced series of
16384= 215 0’s and 1’s. We then used the freely available wavelet transform routines in WaveLab
[10] to perform a wavelet analysis using the Haar wavelets.

The table below reports correlations between wavelet coefficients of the original stream and
the three transformed streams. It contains the empirical correlations between the wavelet coef-
ficients at various scales, defining the correlation coefficient at scale j by

Corr(j) =
∑

k

α1
j,kα2

j,k/

(
∑

k

(α1
j,k)2 ·

∑

k

(α2
j,k)2

)1/2

where each sum is over all coefficients at a given scale j.

Scale ∆ =100 ms 200 ms 300 ms
32 sec 0.9964 0.9599 0.9382
64 sec 0.9965 0.9654 0.9371
128 sec 0.9966 0.9695 0.9458

These results are typical and repeatable. Correlations, of course, cannot exceed 1.0. So
these correlations, which approach 1 at sufficiently long scales, are rather large. Evidently, given
about 1 minute’s worth of data on two jittered streams, we can obtain a substantial signal by
correlation of wavelet coefficients. Note particularly the very high correlations when jittering is
less than .1 sec.

8 Detecting Evasions based on Inserting Chaff

In the analysis since section 4, we have assumed that any stream transformation being used to
disguise correlations was conservative – that is, it exactly preserves the number and content of
keystrokes, but perhaps alters their timing.

We now discuss the more general situation when this is not the case. A reasonable way to
begin modelling the general situation is to say that we have two cumulative character counting
functions N1 and N2, and that now

N2(t) = N ′
1(t) + M(t),

where N ′
1(t) is the cumulative counting function of the transformed character arrival times, and

M is the cumulative counting function of chaff arrival times. In short, as we watch characters
coming in, some are from the input stream, only jittered, and others are chaff.

Suppose that we once again compute the statistic Corr(j) at each scale. What happens?
The results of course change. Suppose for simplicity that that the chaff arrives according to
the universal keyclick interarrival process, and that the chaff arrival process is stochastically
independent of the N1 process. Then one can show that instead of

Corr(j) → 1, j → ∞,

we actually have

Corr(j) → ρ, j → ∞,

where 0 < ρ < 1. Here ρ may be interpreted as a ‘signal/(signal+noise)’ ratio, meaning that the
limiting value ρ can be very small if the relative amount of chaff is very large.

Nevertheless, no matter how small ρ might be, any nonzero value for ρ will be detectible, at
least for sufficiently long-lived connections. Indeed, for large enough n, it will be clear that the
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empirical fluctuations in estimates of ρ due to statistical sampling effects are simply too small to
cause observed values of Corr(j) which are substantially nozero. Given more space, we would
provide a detailed analysis of this effect, showing that the mathematics predict a substantial
correlation between wavelet coefficients of N1 and of N2.

In short, although certainly the presence of chaff causes a more complex problem, the statisti-
cal tools and diagnostic approaches suggested for the no-chaff case seem to be equally applicable
to the chaff case.

9 Discussion

This paper has considered basic ‘proof of concept’ issues. In particular, we have not discussed
here the systems-level issues of working in a setting where there may be many hundreds of active
Telnet or SSH connections into and out of a large site (say, a university or corporate network),
and it is required to monitor and detect stepping stones in real time. A typical issue would be
to consider as a monitoring interval a specific length of time (e.g. 4 minutes), and calculate
the proper height of the threshold for the ‘stepping stone alarm’ in order that in looking at
thousands of pairs of connections which are truly uncorrelated, we control the false alarm rate
to a tolerable number of false alarms per day. Obviously, it would be very important to study
such issues carefully.

We have discussed here the fact that real interactive sessions seem to have inter-keystroke
times whose distribution is Pareto in the upper tail. In the analysis section of this paper we
have considered Poisson streams, which are easy to analyze. In the appendix, we show that the
analysis can generalize to other streams. This points out that an accurate theoretical model
for inter-keystroke timing is in order, so that we can focus attention and develop mathematical
analysis associated with that model. Such a correct model would be extremely useful in practical
terms, for example in systems-level work where it could used for false alarm calibration purposes.

Two particular components of the inter-keystroke timing model which should be considered
more closely: (a) the correlation structure of adjacent/nearby inter-keystroke times; and (b)
the chance of seeing many characters in a very short interval. The significance of these can be
gleaned from the discussion in the appendix. Knowing more about either or both components
would help mathematical analysis and simulation accuracy.

There are also other sources of information that we haven’t discussed – the key one being the
two-way nature of interactive sessions. There is far more information than just the keystrokes
on the forward path through the stepping stones, there are also the echoes and command output
on the reverse path, and it should be possible to use information about these to substantially
improve detection.

Appendix

Explanation of the Bumps/Wiggles Dichotomy

Analysis by ”multiscale bumps” provides, as explained above, a collection of multiscale block
averages. In other words, the coefficients measure the rate of typing of the given stream.

Analysis by ”multiscale wiggles” provides, as explained above, a collection of multiscale
differences of block averages. In other words, the coefficients measure the changes in the rate of
typing of the given stream.

It is our opinion that measuring changes in rate, and noticing the times those occur, provides
more reliable evidence for the identity of two streams; so we believe that analysis by multiscale
wiggles (i.e. what is ordinarily called simply wavelet analysis) will give more reliable information
indicating the identity of the two streams.

(There is one other advantage of wavelet analysis: the possibility of developing detectors for
non-keystroke conserving schemes which work by the multiplexing of constant-rate chaff together
with the original stream. Suppose that two streams differ in that stream 2 contains stream 1
along with characters from an independent chaff source of constant rate (e.g. Poisson with
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Rate 20 char/sec). It can be shown, by elaborating the point of view here, that the wavelet
coefficients at sufficiently long scales will have a dependable correlation < 1, but which is stable
and nonzero, and determined by a kind of statistical signal/chaff ratio. So we might notice that
two streams which should be completely uncorrelated actually exhibit correlations which are
definitely nonzero).

The different normalization of the wavelet coefficients in the two cases has to do with the
appropriate means of interpretation of each type of coefficient. Averages are directly interpretable
in the units of the phenomenon being measured, no matter what the scale of the average.
Differences are not so universally interpretable; the convention p = 1/2 ensures that they are
normalized according to the square-root of interval size rather than interval size. The rationale
is that for typical point processes, the coefficients at different scales will then be of comparable
size.

Generalization to non-Poisson Streams

The reader will note that only in two places in the argument of Section 6 did we use the Poisson
process assumption

The first was

max {N1(t + ∆) − N1(t) : t, t + ∆ ∈ [a, b]} ≤ OP (log(b − a)) · E{N1(t + ∆) − N1(t)}.

This condition says that within any maximum tolerable delay interval, we are very unlikely to
see character counts dramatically greater than the average character counts. This inequality is
extremely easy to satisfy and many point processes will obey it. It is also the case that real data
will obey it. We might for example stipulate that no actual human person is ever going to exceed
an absolute maximum of K characters in ∆ no matter how long we wait. If we do, the above
inequality will automatically be true, because log(b − a) grows unboundedly with observation
period, while K is an absolute constant.

Incidentally, the Pareto nature of the upper half of the inter-keystroke timing distribution
described in [9] is entirely compatible with this inequality. Indeed, the Pareto upper tail is
responsible for occasional long dead spots in a stream, where no characters emerge. It is the
lower tail – near zero inter-keystroke spacing – that determines whether the needed condition
holds. The Poisson assumption makes the inter-keystroke distribution have a density e−t/λ/λ
which is of course bounded near t = 0; this boundedness implies that there will not typically
be large numbers of events in a short time. It seems safe to say that this aspect of the Poisson
distribution accurately models real streams of keystrokes.

The second fact used was (in, say, the multiscale block averages case)

V ar[N1(0, T ]] � Const · T

which says that the fluctuation in the number of events per unit time within an interval grows
like the square root of the interval size. This will be true for many stationary point processes.

Now, the Pareto nature of the upper half of the inter-keystroke timing distribution described
in [9], and the possibility of a non-i.i.d. behavior of inter-keystroke times can modify this
inequality, even making the variability grow like a power T β with β �= 1. A more detailed analysis
shows that even though the variance scaling exponents could be different, the fundamental
behavior of the corresponding terms in the analysis would be the same.

Since our simulations indicate that the multiscale diagnostics work very well in the Pareto
case, we omit further discussion of the mathematical details of the extension.
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