
PRIMA: Policy-Reduced Integrity Measurement
Architecture

Trent Jaeger∗
tjaeger@cse.psu.edu

Pennsylvania State University

University Park, PA 16802

Reiner Sailer
sailer@us.ibm.com

IBM T. J. Watson Research Center

Hawthorne, NY 10532

Umesh Shankar∗
ushankar@cs.berkeley.edu

University of California at Berkeley

Berkeley, CA 94720

ABSTRACT
We propose an integrity measurement approach based on infor-

mation flow integrity, which we call the Policy-Reduced Integrity

Measurement Architecture (PRIMA). The recent availability of

secure hardware has made it practical for a system to measure its

own integrity, such that it can generate an integrity proof for re-

mote parties. Various approaches have been proposed, but most

simply measure the loaded code and static data to approximate

runtime system integrity. We find that these approaches suffer

from two problems: (1) the load-time measurements of code alone

do not accurately reflect runtime behaviors, such as the use of

untrusted network data, and (2) they are inefficient, requiring all

measured entities to be known and fully trusted even if they have

no impact on the target application. Classical integrity models

are based on information flow, so we design the PRIMA approach

to enable measurement of information flow integrity and prove

that it achieves these goals. We prove how a remote party can

verify useful information flow integrity properties using PRIMA.

A PRIMA prototype has been built based on the open-source

Linux Integrity Measurement Architecture (IMA) using SELinux

policies to provide the information flow.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
formation Flow Controls

General Terms
Security, Measurement, Management

Keywords
Remote attestation, information flow, Clark-Wilson Lite in-
tegrity

1. INTRODUCTION
Distributed applications and services are essential to our

future information infrastructure, but the development of a
secure system foundation across a set of machines has not

∗This work was done at the IBM T. J. Watson Research
Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’06, June 7–9, 2006, Lake Tahoe, California, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006 ...$5.00.

been achieved. While operating systems and middle-ware
support a wide range of distributed functionality, additional
mechanisms are needed for each machine to trust the others.
For example, one machine may want to know that another
is running a known-good version of the application code on
a well-configured, trusted operating system. Without this
guarantee, the remote machine may be running buggy or
malicious application code, or may be improperly config-
ured such that the trusted application can be corrupted by
untrusted programs or users.

Hardware-based integrity measurement has emerged as a
mechanism that enables one system to prove its integrity to
other remote parties. Taking a measurement of something
(e.g., code or data) means computing a cryptographic hash
of it and extending a hardware-protected hash chain with
it. An example of a hardware component for integrity mea-
surement is the Trusted Computing Group’s (TCG) Trusted
Platform Module (TPM) [14]. Various mechanisms have
been proposed to use such hardware to generate a proof of
a system’s integrity, called remote attestation or authenti-
cated boot [21]. For example, TPod implements extensions
to the grub bootloader to measure the sequence of code loads
that bring up the operating system, and it stores these mea-
surements in the TPM to protect them from tampering by
software [11]. The TPM can create signed messages that
enable a remote party to verify the the code loads measured
by TPod. Further, other approaches have been proposed
to extend integrity measurement and verification up to the
application level. One such approach, the Linux Integrity
Measurement Architecture (IMA), has Linux measure code
loaded and static data files (e.g., configurations) used, such
that a remote party can verify that a Linux system con-
tains no low integrity components [18]. These approaches
provide a way to start with a small trusted component—the
TPM—and leverage that to build a proof for a whole system
by taking systematic measurements of each piece as it loads.

The extensions of TPM measurement to prove the in-
tegrity of systems at the application-level suffer from two
limitations, however. First, the load-time measurements of
code alone do not accurately reflect runtime behaviors, such
as the use of untrusted network data. Second, existing ap-
proaches require the entire system to be trusted (more pre-
cisely, measured) even when the remote party only requires
the integrity of a specific application. Generally, a remote
party wants to use a particular application, that we call the
target application of the attestation. With a suitable security
configuration and operating system support, that applica-
tion can be isolated in an information-flow sense from most

Analyze

D

a

t

a

Inferred System

DB

a

t

Programs

Config

F
iles

Boot

P
ro
cess

SHA1(
Boot L
oader
)

SHA1(Kernel)

SHA1(Modules)

SHA1(Programs)

SHA1(Libraries)

SHA1(Configuration)

SHA1(Data)

…

Measure

Signed Aggregate

Real System

S
tatic

kernel

Kernel

M
odule

Deduce Integrity

Properties

Attesting System

Known

Fingerprints

TPM

(3) Verification

Verifying System

(1) Measurement
 (2) Attestation

Figure 1: Linux IMA Overview: The attesting system generates system measurements (1) into a TPM-backed
attestation (2) that a remote party can verify (3).

other applications on the system. Without access to such
dependency information, a remote party must conclude that
any unknown or untrusted program that is loaded may com-
promise the target application, regardless of whether any
real dependency exists that may compromise it.

Historically, the integrity of applications has been eval-
uated using system information flows. Using information
flow, an application’s integrity is determined by the integrity
of the inputs that it depends on. From the target applica-
tion’s perspective, we refer to inputs that are known to come
from trusted sources as high integrity, and those that may
come from untrusted source as low integrity. Classical in-
tegrity models can represent such an integrity relationship,
as well as more complex ones consisting of a greater number
of integrity levels, as a lattice. For example, Biba integrity
requires that a process (noting that an application may con-
sist of a set of processes) receive no input that is lower in-
tegrity than itself [4]. Low-Water Mark Integrity (LOMAC)
requires that a process’s integrity be that of the lowest in-
tegrity input that it receives [12]. Using information flow
information, we can address the two limitations of current
integrity measurement approaches. We can see where run-
time inputs come from, and we can optimize measurement
by restricting it only to those elements on which the target
application depends.

In this paper, we define the Policy-Reduced Integrity Mea-
surement Architecture (PRIMA), an extension of the Linux
IMA that measures not only the code that is run on a sys-
tem, but also which information flows are present among
processes. PRIMA’s approach therefore lets us attest more
sophisticated integrity guarantees, including most classical
models like Biba and Clark-Wilson [6]. However, using a
more practical integrity model, CW-Lite, which we defined
in recent work [19], we can improve the efficiency of the at-
testation. We therefore use it as our example. CW-Lite is a
pared-down version of Clark-Wilson integrity that relaxes its

formal verification requirement and uses the system security
policy’s implied information flows to reduce requirements on
trusted applications. From an information-flow perspective,
it provides the same guarantee as the Clark-Wilson model,
i.e., all flows from untrusted processes to high integrity ones
must pass through a filtering/sanitizing procedure in the
destination process.

In this paper, we prove that PRIMA can attest CW-Lite
and describe the prototype implementation of the PRIMA
system for Linux using SELinux security policies. We also
describe concrete threats that the PRIMA approach ad-
dresses that previous approaches do not. We find a variety
of cases where previous integrity measurement approaches
would generate false negative attestations (i.e., an attesta-
tion would succeed when the target may be compromised)
and false positive attestations (i.e., an attestation would fail
when the target is high integrity). PRIMA would reason
correctly in each of these cases, with a likely decrease in the
number of measurements necessary.

This paper is organized as follows. In Section 2, we exam-
ine current integrity measurement, its limitations, and how
information flow can address these limitations. In Section 3,
we detail the PRIMA measurement approach and show that
it satisfies the integrity measurement requirements. In Sec-
tion 4, we outline a prototype implementation of PRIMA
that measures SELinux policies for CW-Lite integrity. In
Section 5, we examine several cases where IMA and PRIMA
would generate different attestation results and describe how
PRIMA achieves the desired result. In Section 6, we discuss
related work. In Section 7, we outline future work and con-
clude.

2. BACKGROUND
In this section, we first describe an example of the in-

tegrity measurement problem. We then provide some back-
ground in integrity measurement architectures and informa-

tion flow for developing solutions in subsequent sections.

2.1 Example Integrity Problem
Many employees of corporations use laptop computers

as the main computing environments. On these systems,
they run applications that the corporation depends on, such
as purchasing, performance appraisals, expense reporting,
etc. Also, employees run programs that are notorious for
the vulnerabilities they enable, such as web browsing and
email, that could impact the integrity of these corporate ap-
plications. A corporation would like its servers to verify the
integrity of its corporate applications on these laptops – that
is, that they are protected from other programs that may
run on the same laptop – before permitting the corporate
applications to connect to those servers.

In the past, we implemented a system that verifies remote
system integrity before releasing corporate data to that sys-
tem [?]. The difference here is that laptops will almost al-
ways fail that verification because low integrity or unknown
software will be running, and we cannot guarantee protec-
tion of corporate data from those applications. However,
the use of information flow enforced by mandatory access
control in operating systems, such as the Linux Security
Modules framework [?] using the SELinux module [2], can
enable the isolation of key applications from such user pro-
cessing. Our goal is to extend remote attestation to enable
such a guarantee.

2.2 Integrity Measurement
Integrity measurement architectures aim to measure the

status of a computer system, such that a remote party can
prove the integrity of this system. Such architectures con-
sist of measurement systems, attestation mechanisms, and
verification mechanisms that test an integrity property. An
integrity measurement system defines what measurements
will be made, how they will be stored, and how their validity
will be preserved. A computer attestation mechanism defines
the protocol by which these measurements are conveyed to
remote parties securely. Lastly, the remote party uses a ver-
ification mechanism to test the measurements against the
expected integrity property. For our purposes, the most im-
portant facets are the integrity property and how it is mea-
sured and verified. For details on the measurement process,
the reader is referred to prior work on the Linux Integrity
Measurement Architecture (IMA) [18].

The most common integrity property of current systems
is load-time integrity. This property requires that all code
is measured at load-time, and that it is known to be of
high integrity. The remote party can verify this by checking
the measurements against known acceptable measurements
(e.g., binaries shipped with the Fedora Core 4 distribution).
This approach is used in outbound authentication [21], Pal-
ladium/NGSCB [10], and IMA [18]. Terra uses a similar ap-
proach, measuring static VM pages rather than static code
and pages at the file level [13]. The BIND system takes a dif-
ferent approach by measuring discrete computation steps by
their inputs and code, but the current examples are similar
in granularity to file-level measurements [20].

For load-time integrity, both code and static data files
are measured. Both are measured at load-time (i.e., prior to
execution) into secure hardware, in particular the Trusted
Computing Group’s Trusted Platform Module (TPM), to
ensure that their execution cannot hide the fact that they

were loaded. A load-time measurement for code implies that
the code was in a known state when it was loaded. A load-
time measurement of a static file indicates that that file had
a known value when it was loaded. The known state of code
and data is important for verification because the remote
party must also know these states in order to reason about
their integrity impact. Thus, a remote party can prove that
the code and static data are in known, high integrity states
when they are loaded on this system.

2.3 Limits of Load-Time Measurement
Load-time measurement is limited in the runtime guar-

antees that can be inferred. First, load-time guarantees only
state that the code is of high integrity when it was loaded.
Trust in the code measured at load-time requires that all in-
formation flows be handled adequately by the program. In
this context, a high integrity program is one with no known
vulnerabilities. However, such programs can be compro-
mised if an untrusted input can impact a previously un-
known vulnerability.

Second, any stateful programs are dependent on dynamic
state, and load-time measurement cannot ensure that this
dynamic data is handled in a manner that preserves its high
integrity. For example, a transaction processing system may
have its customer database modified without detection by
load-time measurement. Many integrity measurement archi-
tectures provide what is called authenticated boot whereby a
remote party can verify whether the system has booted with
high integrity code. However, the system will still run even
if low integrity code has been loaded, so dynamic data may
be modified by a low integrity system, then rebooted such
that authenticated boot will succeed. However, the compro-
mised dynamic data will render the application low integrity
in reality. The initial state of the system at each boot must
be verified to prevent this attack.

Third, load-time measurement results in a more conserva-
tive guarantee than necessary with respect to the amount of
code that must be trusted. Only code and data that the tar-
get application (i.e., the application that the remote party
requires) depends upon needs to be high integrity. The in-
tegrity of code loaded on the system that has no information
flows to the application need not be trusted. As above, this
guarantee must be enforced across system boots.

2.4 Information Flow Integrity
Information flow integrity models explicitly represent the

possible dependences of both code and data. For example,
the Biba integrity model requires that code executed and
data read by a process be at its integrity level or higher [4].
Thus, problems such as code injection and dependence on
low integrity dynamic data will be prevented by the integrity
policy. In addition, there is no need to measure the loads
of lower integrity code, because this code cannot impact the
target code. The same guarantee would also be provided us-
ing the Low-Water Mark (LOMAC) integrity model, where
the integrity of a process is equal to the lowest integrity level
of any of its inputs [12].

Our goal is to extend load-time integrity measurement
to information flow integrity measurement. The following
guarantees are necessary for Biba integrity measurement us-
ing information flow.

1. Trusted Subjects: The set of trusted subjects in the
MAC policy must be trusted by the remote party.

2. Trusted Code/Data: All code and static data loaded
for any trusted subject must correspond to known and
trusted hashes by the remote party.

3. Information Flows: All information flows to a trusted
subject must come from another trusted subject.

We must be able to distinguish the trusted subjects in the
MAC policy from those that do not require trust. Trust is
determined by the target application: the target application
and all subjects that it must trust are in the trusted appli-
cation set (i.e., form the relevant trusted computing base
to the remote party). In the laptop example, the corpo-
rate applications form the target applications. If the client
application programs are known and trusted, and there are
no information flows from client applications, such as the
browser and email client, to these corporate applications and
the programs that they depend upon (e.g., system services),
then Biba integrity is satisfied.

This is a reasonable start, but Biba-style models fail to
capture a common case: high-integrity processes that much
handle low-integrity inputs. For example, many UNIX ser-
vices, such as sshd, vsftpd, and inetd, receive untrusted
network input. Also, the corporate applications are con-
nected to the network, so they must protect themselves from
untrusted inputs. The Clark-Wilson integrity model ex-
presses requirements in a manner that more closely mirrors
what we are seeing [6]. The Clark-Wilson integrity model
consists of several rules cover authentication, audit, and sep-
aration of duty, but two rules are particularly relevant in this
context: (1) initial verification procedures 1 ensure that the
system state is of high integrity upon each boot and (2)
transformation procedures are the only processes that oper-
ate on high integrity data and they are assured to discard or
upgrade the integrity of any low integrity inputs that they
receive. In the first case, dynamic data is checked to verify
that it was not compromised in prior boot cycle, such as
ensuring unsealing of high integrity data only when trusted
programs boot [17]. In the second case, trusted processes,
such as the UNIX services above, can protect themselves
from low integrity inputs.

2.5 CW-Lite Integrity
There are two practical problems with applying Clark-

Wilson directly to commercial systems: (1) complete, for-
mal assurance of high integrity applications is not practical
and (2) only a small number of application interfaces are
expected to handle low integrity data in practice. First,
broad application of formal assurance to programs requires
automated tools to verify the correctness of programs that
have not emerged in the 19 years since the model was de-
fined. Second, we find that in practice only few interfaces
are open to the network or other information flows that will
accept low integrity data. Only these interfaces need to be
managed. We define a weaker version of Clark-Wilson in-
tegrity, called CW-Lite [19], that requires that: (1) only
the interfaces accepting low integrity data must have filters
and (2) complete, formal assurance of the program is not
required, although some basis for trust in the filter inter-
faces’ ability to discard or upgrade low integrity inputs is

1Actually, they are called integrity verification procedures in
the Clark-Wilson model, but we changed the name prevent
conflict.

Biba Integrity

X

X

X

Load-time Integrity
 CW-Lite-Integrity

X

Low Integrity Process
Low Integrity Process

High Integrity Process
High Integrity Process
 X
--
Integrity Failure
X
--
Integrity Failure

Filtering Interface
Filtering Interface

Low Integrity Network Data

X

X

Figure 2: Integrity semantics of different integrity
models: (1) Load-time measurement fails when any
low integrity code is loaded, but ignores the impact
of low integrity network data; (2) Biba integrity con-
siders information flows, but fails if any low-to-high
integrity flow is present; (3) CW-Lite allows some
low-to-high flows via filtering interfaces only.

expected 2. The enforcement mechanism restricts access ac-
cording to Biba integrity for normal interfaces, but permits
low integrity information input at filtering interfaces.

Figure 2 shows the different forms of integrity verifica-
tion semantics offered by load-time, information flow, and
CW-Lite integrity measurement. In the load-time integrity
measurement, the presence of low integrity code invalidates
system integrity, whereas low integrity inputs do not. The
laptop example would fail load-time integrity because of the
presence of untrusted client applications. In information
flow integrity, the input of low integrity code or data invali-
dates system integrity. The laptop example would fail infor-
mation flow integrity because of the input from untrusted,
remote parties at a minimum. In CW-Lite, some low in-
tegrity information flows may be accepted by high integrity
subjects. In the laptop example, the some interfaces of the
UNIX services and corporate applications may be deemed
capable of discarding or upgrading such low integrity inputs.
We refer to these interfaces as filtering interfaces. In CW-
Lite, low integrity permissions are only accessible through
filtering interfaces via filtering subjects. That is, the permis-
sions of filtering subjects are only available when the code
of a filtering interface is run. Otherwise, the process runs
with the permissions of a trusted subject and is limited to
Biba integrity. See the detailed description [19] for more
explanation.

We now extend the Biba integrity verification to support
verification of Clark-Wilson Lite integrity by the following,
additional guarantees:

4. Initial Verification: The initial verification proce-
dure code must be of high integrity and the verification
must be successful.

2We do not define how this is done, but the filtering in-
terfaces in privilege-separated OpenSSH [?] serve as our
motivating example.

5. Filtering Interfaces: Any claim that a particular
interface discards or upgrades all low integrity inputs
must be verifiable.

6. Filtering Subjects: The permissions to receive low
integrity inputs must only be available to filtering sub-
jects, and these subjects must only run within the con-
text of filtering interfaces.

Since we are using authenticated boot, we must be able
to verify the integrity of the dynamic data on boot as spec-
ified in the Clark-Wilson integrity model. Next, we identify
(or build) filtering interfaces into those applications that we
want to entrust to read low integrity data. We must ensure
that the additional permissions to read low integrity data in
the filtering subject are only used at filtering interfaces. If
remote parties accept that any program that uses a filtering
subject has acceptable filtering interfaces, they additionally
verify that the filtering subjects are only enacted at those
interfaces prior to accepting the system as meeting CW-Lite
integrity.

3. POLICY-REDUCED INTEGRITY
In this section, we detail how each of the 6 requirements

are met by the Policy-Reduced Integrity Measurement Ar-
chitecture (PRIMA) and describe the actual measurements
that must be made.

3.1 PRIMA Requirements

Trusted Subjects. Trusted subjects are the set of MAC pol-
icy subjects, T ⊆ S where S is the set of all MAC policy
subjects, that must be trusted by the remote party for the
integrity of the system to be verified. If the remote party
does not trust one of the subjects, then the remote party
must assume that target application receives a low integrity
information flow.

The attesting system (i.e., the system doing the mea-
surements) must explicitly collect the list of trusted sub-
jects and measure the list. PRIMA collects two sets of mea-
surements: (1) a hardware-protected hash aggregate H(Xi)
where H is a hash function (e.g., SHA-1) and Xi is the
ith aggregate and (2) a measurement list M consisting of
the individual components that were measured. For trusted
subjects, H(Xi+1) = H(Xi||H(T)), where that the hash of
the trusted subjects list is chained with the current value of
the TPM Xi. Since the remote party won’t know the list of
trusted subjects we also add this list to a separately stored
measurement list M as one measurement Mi+1 = Mi||mT .
mT is a set of subject names, and experience has shown that
this is a modest size (about 50).

Trusted Code/Data. This is the code and static data used
by a trusted subject in the system. Therefore, we must
measure the code or data with the subject that it pertains
too. The remote party determines for each trusted subject
that the code and static data measurements made for that
subject correspond to known and high integrity hash val-
ues. Further, the code may indicate the role of the static
data used. For example, the remote party should be able
to determine that a known configuration file was used as a
configuration file rather than a static input data file.

PRIMA measures the code/data, subject, and optional
role if the subject is trusted. We build a measurement entry
md = (d||s||r) where d is the code or data digest, s is the
trusted subject, and r is an optional role identifier. The ag-
gregate is H(Xi+1) = H(Xi||H(md)). The measurement list
is extended with the measurement entry Mi+1 = Mi||md.

Information Flow. Information flow shows how data flows
among system subjects S, both trusted and untrusted, based
on the read and write operation in the MAC policy. Infor-
mation flow is represented as a graph G = (S, E) where S is
the set of subjects that form the vertices of the graph and
E is the set of edges that describe information flows oper-
ations. An edge from subject s1 to subject s2, s1, s2 ∈ S,
is added if s2 reads an object that s1 can modify. The re-
mote party will verify that all information flows to a trusted
subject are from other trusted subjects.

Information flow is derived from the MAC policy, so PRIMA
must measure the MAC policy. To ensure correctness of
the system, the binary MAC policy is measured. It is the
remote party’s responsibility to build an information flow
graph. We envision that standardized policies, such as the
SELinux Reference Policy, may result in only the need to
measure a hash of the MAC policy. Currently, the aggregate
is extended by H(Xi+1) = H(Xi||H(p)) where p is the MAC
policy. The measurement list is extended by Mi+1 = Mi||p
or via the hash of p if that is meaningful. This measurement
must be taken only once.

Initial Verification Procedure (IVP). The IVP is the code
that is measures the integrity of a system at boot time and
the result of the execution of that procedure. The remote
party will verify that the IVP ran and that its result meets
expectations. Such methods are currently domain-specific
and no foolproof mechanism without hardware support has
been identified.

The attesting system already measures code and its map-
ping to subjects, so we can identify the IVP subject and IVP
code using trusted code/data measurements. Further, the
IVP code can measure the result of the IVP test in the man-
ner of static data. Thus, no new types of measurements are
necessary to capture the IVP and its results.

Filtering Interfaces. Filtering interfaces are in the code of
programs running as trusted subjects. Above trusted code,
this code will be trusted switch subject identity to filtering
subjects, to discard or upgrade low integrity inputs, and
switch back to the trusted subject.

Since all code of trusted subjects is already measured,
the attesting system needs no additional measurements for
enabling verification of filtering interfaces.

Filtering Subjects. F is a set of subjects F ⊆ S where
F ∩ T = which have permissions to access low integrity
information flows. The remote party must be aware that
such filtering subjects are present to know which code to
verify for use of filtering interfaces.

Each filtering subject is associated with a single trusted
subject (not all trusted subjects have filtering subjects).
Thus, we extend the measurement entry for trusted sub-
jects mT to include the indication of whether the trusted
subject has an associated filtering subject. No additional

measurements are made.

To Verify CW-Lite Formally. , the following must be ver-
ified as true by the remote party:

1. If a measurement entry in the measurement list is for
a trusted subject, md’s subject is t where t ∈ mT , the
remote party verifies that code/data digest (d in md)
is known and high integrity and serves the measure-
ment’s role (r in md) if specified.

2. For each subject s ∈ S, the following information flow
requirements must be met depending upon whether it
is a trusted, filtering, or untrusted subject:

• For a trusted subject t ∈ T ⊆ S, all information
flows connected directly to the subject must be
from other trusted subjects. Only the edges con-
nected directly need to be examined because the
existence of any low integrity flow to any trusted
subject is sufficient for failure.

• For a filtering subject f ∈ F ⊆ S, no require-
ments.

• For an untrusted subject u ∈ S − (T ∪ F), no
requirements.

3. For the IVP subject i ∈ T ⊆ S, the code loaded M(i)
must meet the requirements of trusted subject code in
#1, be trusted to perform integrity verification, mea-
sure the verification result, and the integrity verifica-
tion result measurement must be positive.

4. For any trusted subject with an associated filtering
subject (indicated in mT), its code meet the require-
ment for the code of any trusted subject in #1 and be
trusted to activate the filtering subject only within fil-
tering interfaces that are trusted to discard or upgrade
all low integrity inputs.

3.2 PRIMA Measurements
In addition to the basic integrity measurements of code

and static data, we identify the following set of measure-
ments necessary for a remote party to verify CW-Lite in-
tegrity:

1. MAC Policy: The mandatory access control (MAC)
policy determines the system information flows.

2. Trusted Subjects: The set of trusted subjects (TCB)
that interact with the target application is measured.
The remote party must agree that this set contains
only subjects that it trusts as well.

3. Code-Subject Mapping: For all code measured,
record the runtime mapping between the code and the
subject type under which it is loaded. For example, ls
may be run by normal users or trusted administrators;
we might want to trust only the output of trusted pro-
grams run by trusted users. If the same code is run
under two subject types, then we take two measure-
ments, but subsequent loads under a previously-used
subject type are not re-measured.

At system startup, the MAC policy and the set of trusted
subjects is measured. From these, the remote party con-
structs an information flow graph. The remote party can

verify that all edges into the target and trusted applications
are either from trusted subjects (that are verified at runtime
only to run trusted code) or from untrusted subjects via fil-
tering interfaces (recall that we extended the MAC system
to include interface-level permissions).

Next, we measure the runtime information. Due to the
information flow graph, we only need to measure the code
that we depend on (i.e., trusted subjects’ code). All oth-
ers are assumed untrusted anyway. Also, we measure the
mapping between the code loaded and the trusted subject
in which the code is loaded, so the remote party can verify
that the expected code is executed for the subject. This
is analogous to measuring the UID a program runs as in
traditional UNIX.

3.3 PRIMA Correctness
We now show that PRIMA achieves verification of CW-

Lite integrity as described in Section 3.1 above.

Requirement 1: High Integrity Code Loaded in Trusted
Subjects. PRIMA measures all code loaded into trusted
subjects and the mapping between code and the subject.
This is the same as traditional integrity measurement (e.g.,
IMA), except that the mapping of code measurement to sub-
ject is captured and untrusted subject code is not measured.

Requirement 2: CW-Lite Information Flow Require-
ments. PRIMA measures the binary MAC Policy which
defines the information flows in the system. From the bi-
nary MAC policy, an information flow graph G = (S, E)
can be constructed and the information flow tests described
above can be executed.

Requirement 3: Initial Verification. PRIMA measures
the code of trusted subjects and the IVP would run as a
uniquely identifiable trusted subject. The result of the IVP
would be measured in the manner of static data, and trust
in the IVP would justify trust in the result measurement.

Requirement 4: Filtering Interface Correctness and
Use. PRIMA measures the code of a filtering subject in-
directly under its corresponding trusted subject. That is,
M(t) = M(f) where t is a trusted subject and f is the
corresponding filtering subject. However, the presence of a
filtering subject for a trusted subject indicates the presence
of filtering interfaces in the code previously measured. It
is the remote party’s responsibility (perhaps delegated to a
trusted third party) to determine if the code’s hash value
justifies the requirements that the filtering subject only be
activated at filtering interfaces and that the filtering inter-
face can be trusted to discard or upgrade all low integrity
inputs.

4. IMPLEMENTATION
This section describes the extensions to SELinux and

the Linux Integrity Measurement Architecture (IMA) nec-
essary to develop a PRIMA implementation that measures
the CW-Lite integrity property of a system. First, we de-
scribe how information flow is derived from a traditional
SELinux policy. Next, we outline changes to the SELinux
module and policy to enable CW-Lite policies to be defined.
Third, we describe the implementation of IMA relevant to

this discussion. Finally, we describe the extensions to IMA
required to construct PRIMA, such that it can be applied
to the CW-Lite SELinux system. Issues related to imple-
menting PRIMA in a practical environment are discussed
here.

4.1 SELinux
We apply PRIMA to the SELinux system [2] because it

provides a comprehensive MAC policy implementation for
Linux. Security-enhanced Linux (SELinux) is a Linux Secu-
rity Module (LSM) that enforces mandatory access control
(MAC) across all user-visible Linux objects for all Linux
user processes. SELinux enables control of all system infor-
mation flows, so it is a logical level at which to integrate
information flow integrity measurement. The LSM inter-
face defines where the Linux kernel authorizes user process
operations on kernel resources (e.g., files and sockets), and
SELinux implements those authorizations. SELinux defines
its own MAC policy model, an extended Type Enforcement
(TE) model [5]. TE labels subjects and objects as types and
defines access of subjects to objects to perform operations
in the manner of an access matrix policy. In prior work,
we have shown how to convert an SELinux TE policy to an
information flow policy [15, 16]. Others have also developed
SELinux policy information flow analysis tools [8, 7].

4.2 SELinux and Application Changes
SELinux does need to be changed to support CW-Lite

subjects, however. Two things need to be done: (1) a new
CW-Lite subject needs to be constructed and added to the
SELinux MAC policy and (2) SELinux needs to recognize
when to use the CW-Lite subject rather than the original
subject (i.e., the one that adheres to Biba integrity).

First, since the MAC policy easily supports the addition
of a new subject, the addition of a new CW-Lite principal
to the MAC policy is a straightforward policy update. The
original subject’s permission assignments, plus the new low
integrity input permissions, are assigned to the new CW-Lite
version of the subject. SELinux then permits access when
the CW-Lite subject is activated. It is more economical
in policy space to have a single subject and its extended
CW-Lite rights, because we would not need a redundant
copy of the original subject’s rights, but we would then have
to change the entire SELinux module to use the extended
rights without additional performance overhead. Such work
is beyond the scope of the prototype.

Second, the SELinux module is modified to recognize
transitions between the original and CW-Lite subjects. We
add SELinux module calls via sysfs where the application
can tell SELinux to activate or deactivate the CW-Lite sub-
ject. The application is entrusted with the responsibility
of deciding when to activate CW-Lite rights as part of the
filtering interface. Trust in the filtering interface includes
trust in activating the low integrity permissions.

Also, applications must be changed to inform SELinux
when the CW-Lite subject is activated and deactivated. The
SELinux module calls are wrapped in a macro DO FILTER

that activates the CW-Lite subject, performs a low integrity
read, and deactivates the CW-Lite subject. Such filtering as
is necessary occurs outside the scope of DO FILTER which is
acceptable as the low integrity permissions are no longer
required.

Figure 3 summarizes the SELinux and application changes

required for CW-Lite integrity. More details on the imple-
mentation are provided elsewhere [19].

4.3 Integrity Measurement Architecture
The Linux Integrity Measurement Architecture (IMA)

measures files at load time to ensure that all loaded code
prior to compromise has been measured. Thus, the vulner-
able or malicious software or data that resulted in the com-
promise will be captured in the measurement list. While
it may prevent new measurements, a compromised system
cannot remove its past measurement without detection.

IMA is implemented as a Linux Security Module (LSM)
like SELinux. The two key features are (1) how IMA gen-
erates integrity measurements and (2) the information col-
lected in these measurements. This will serve as a basis for
determining how to extend IMA to PRIMA.

IMA interposes the two operations in which the kernel
loads code: (1) file mmap where the a new program’s code
as well as dynamic library code is mapped prior to execution
and (2) kernel module loads. Other code loading, such as
internal code loading (e.g., databases, bash scripts) must be
performed by applications. IMA provides an interface for
an application to measure code before it is loaded. Further,
this interface may also be used for measuring any static data
that may be relevant to attestation.

An IMA measurement entry consists of a file name and
hash value primarily. Other values are tracked to determine
if a measured file is modified. The file name enables identi-
fication of the expected hash value for the entry. The hash
value is used in the computation of the TPM’s PCR value
used to verify the integrity of the measurements themselves.

4.4 PRIMA Extensions
PRIMA requires changes to the IMA measurement entry

to capture the mapping between code and MAC policy, and
it needs to capture the MAC policy loads and other relevant
policy specifications.

First, PRIMA must capture the subject label of code
when it is loaded in an unforgeable manner. This means that
the label must be measured with the associated code. A new
measurement, m = H(mc+t), is taken of a concatenation of
the code measurement mc and the subject type label t. Since
the remote party won’t know the subject label from the file
name, a new field must be added to the measurement entry,
called subject, to indicate the label used for the hash value.
Note that a separate measurement for the code is needed for
caching (e.g., see the shared library problem below) and for
the remote party to verify the code integrity 3.

As noted previously, we limit PRIMA measurement only
to code or data loaded on behalf of trusted subjects. This
results in a conservative analysis because not all untrusted
subjects may be run, so not all low integrity flows may
be activated by the time of the attestation. However, the
PRIMA approach assumes that the MAC policy does not
permit trusted subjects to ever have any dependence on low
integrity information flows. Thus, a static, load time mea-
surement of the MAC policy for the existence of such flows
is sufficient. The runtime measurements are to ensure that
the code loaded into trusted subjects has sufficient function

3Despite the additional measurement per code load, we still
believe that the measurement is “policy-reduced” through
elimination of unnecessary measurements, but any term may
be used as long as resulting acronym is PRIMA.

Original IMA
 Refined PRIMA

Policy, Code, File

Measurements

Trusted

Subject/Object

Type?

Subject

Filtered?

Measure File +

Append To List +

Extend TPM

Yes
 No

Policy/InfoFlow

Analysis

Measurement
 Verification
 Measurement
 Verification

OK

Low

Integrity

Flow?

Yes

Into

Trusted

Subject?

Yes

Fail

No

Yes

No

Measure File +

Append To List +

Extend TPM

InfoFlow

Irrelevant

OK

Trusted?

No

Fail

No

Yes

Code, File

Measurements

Trusted?

Fail

No

Yes

Load Request

(execs, libs,

configs, …)

Load Request

(policy, execs,

libs, configs, …)

Figure 3: Differences between IMA and PRIMA in measurement and the remote party’s analysis of mea-
surements.

(i.e., filtering) and is of sufficient integrity (i.e., as previously
assumed for a trusted subject in IMA).

We add a new measurement for policy loading. Since
this is specific to the LSM that we are using, this hook is
added to SELinux’s security load policy function. Un-
like executable files, policies are more mutable, so it may
be necessary to send the policy with the measurement list.
Since SELinux policy files exceed 1MB, this would limit the
practicality of PRIMA. Two viable options exist given the
current state: (1) the binary policy is standardized, such
that its measurement indicates a policy known to remote
parties and (2) the source policy can be measured instead.
In the first case, the remote party can retrieve the source
policy for the binary and perform analysis on that. In the
second case, the remote party must trust that the binary
and source policies match. We expect that some indirect
processing of measurements on the attesting system will be
necessary for scalability and privacy reasons, but a formal
basis for such trust is not yet present.

The notion of trusted subjects is not explicit in SELinux
at present, so this would need to be added to the policy
loading process. For example, init can be modified to get a
trusted subjects file and measure this. We have not mod-
ified init to do this yet, but the change is straightforward.

We found a problem during the PRIMA implementa-
tion. Dynamically linked libraries are loaded in multiple
processes, as multiple subjects, but their impact on integrity
does not change. We only measure a .so file once, when it
is loaded in its first process running as a trusted subject.

5. DISCUSSION
In this section, we briefly examine the impact of infor-

mation flow integrity, in particular CW-Lite integrity, on
integrity measurement accuracy and effort.

Untrusted User Code. In a client system, it may be that
several user programs are being run along with a particular
banking client. If the SELinux policy enables isolation of
the banking client program and the programs it depends
on from other user programs, then the bank server can use
PRIMA to attest to the banking client program. The other
user programs do not impact this client program, and the
information flow analysis of the SELinux policy will show
that.

Untrusted Code in a Trusted Subject. Suppose a trusted
subject is tricked into loading a vulnerable version of an ap-
plication, such as an old version of OpenSSH. Even if there
are no information flow problems, PRIMA will enable detec-
tion of this problem because all code loaded into a trusted
subject is measured. This is no different than IMA.

The loading of untrusted libraries and kernel modules will
also be caught. Even though a library is only measured the
first time that it is loaded into a trusted subject, we will see
this initial load in the PRIMA measurements.

Unknown Code. Suppose a program is loaded on an attest-
ing (i.e., integrity-measuring) server, such as an administra-
tor’s script to examine the state of system policies. Since
a remote party may not be aware of the program, its pres-
ence in an integrity measurement list would likely result in
a failure of the computation.

However, with PRIMA, since no target application has a
dependency on this program (i.e., it does not write any files),
it need not be run by a trusted subject. Thus, it would not
appear in the PRIMA measurement list.

Suppose, however, that the program was run by a trusted
subject. Typically, the standard system administrator sub-
ject must be trusted. In that case, it would appear in the

PRIMA measurement list and cause a false failure. SELinux
enables subjects to transition when running a program, so
the solution would be to add a new SELinux type transition

rule where the administrator subject would transition to an
application subject upon executing this program 4.

Filtering Inputs. Several system services, such as OpenSSH,
inetd, etc., accept requests from the Internet, potentially
from malicious users. For OpenSSH, Provos et al. con-
structed a privilege-separated version of OpenSSH which
accepts only well-formatted requests in permitted orders.
Such an interface is an example of a filtering interface, thus
enabling permissible access to the network. A remote party
could verify that OpenSSH program’s filtering interface is
acceptable, and that this is the only place where the filtering
subject is activated. When PRIMA provides this program
measurement for the OpenSSH subject, the remote party
could then accept the integrity of this system.

For other programs, such as inetd, not as much effort
has gone into a filtering interface, but we envision that an
understanding of where security problems are can motivate
filtering interface implementation, including software tools
to assist in development.

Other Low Integrity Inputs. OpenSSH uses temporary
files to enable local user data to be input to the OpenSSH
server. We are not sure where such a function is valuable,
but clearly this is a low integrity information flow. PRIMA
and the CW-Lite extensions enable two ways to handle this.

First, if access to a temporary file is given to the OpenSSH
server’s trusted subject, then it can open the file from inter-
faces other than the filtering interfaces. This could lead to
a compromise of the system. The PRIMA policy measure-
ment will include this permission with the trusted subject,
and the policy analysis by the remote party will find the low
integrity input to a trusted subject. The attestation will fail
in this case.

Second, if access to the temporary file is given to the
OpenSSH server’s filtering subject, then the file can only be
opened from filtering interfaces. Thus, any other attempt
by the server to access the file will be denied because the
trusted subject does not have access. The PRIMA policy
measurement will show that the trusted subject does not
have the low integrity information flow of the previous case.
The filtering interface must be implemented to handle all
low integrity inputs.

6. RELATED WORK
The use of a program’s load-time hash value to assess its

integrity was proposed as part of the Logic of Authentication
applied to the Taos operating system [1]. Here, the goal
was to justify the identity of the initial system principals,
which led to the notion of secure boot where a system is not
booted unless the hashes of the code loaded meet expected
values [3]. Attestation implies a slightly different guarantee,
called authenticated boot, where it is possible for a remote
party to verify the integrity of a system via the code that it
loads. As Bill Arbaugh has pointed out, secure boot enables
a local party to determine if a system is of high integrity,
but not a remote party. On the other hand, a remote party

4It is somewhat more complex than this due to the use of a
script interpreter for the script, but the basic idea is valid.

can prove the integrity of system using authenticated boot,
but the fact that the system is running does not determine
its integrity.

The basic integrity semantics of authenticated boot were
defined in the IBM 4758 work [21]: the code loaded must
be of high integrity at load time and identifying secrets (e.g,
private keys) for the code principal must be protected from
leakage. Subsequent mechanisms, such as Next-Generation
Secure Computing Base (NGSCB) [10], Terra [13], Linux
Integrity Measurement Architecture (IMA) [18], enforced
these basic semantics using the cheaper TPM hardware.

The BIND attestation system took a very different view
of integrity where the dependency on inputs is made ex-
plicit [20]. A measurement consists specifically of inputs
and critical code that operates on these inputs. This binds
the input dependency with the code that operates on them.
However, there are several issues with this approach which
remain unproven: (1) Does the combination of inputs and
computation required to achieve high integrity encompass
nearly the entire application? (2) How are implicit flows,
such as those identified by Denning [9], captured? (3) How
are known, low integrity inputs handled? The initial ex-
periments show measurement of BOINC components (i.e.,
process-level components) which is analogous to IMA.

7. CONCLUSION
In this paper, we have shown that an integrity measure-

ment approach based on information flow integrity can be
constructed and enables much more accurate integrity ver-
ification than existing approaches. Current integrity mea-
surement approaches only measure the code loaded into the
system and static data files, so they fundamentally provide
load-time guarantees. We have found two key problems with
these approaches: (1) the load-time measurements of code
alone do not accurately reflect runtime behaviors, such as
the use of untrusted network data, and (2) they are in-
efficient, requiring all measured entities to be known and
fully trusted even if they have no impact on the target ap-
plication. We have developed the Policy-Reduced Integrity
Measurement Architecture, an extension of the Linux IMA
system, that measures information flow integrity guarantees
that can be verified by remote parties. PRIMA requires only
the additional measurements of MAC policy and trusted
subjects at load time and the mapping between code and
MAC policy subjects at runtime to resolve both key prob-
lems, and a number of measurements are eliminated because
there is no longer a need to measure the code of untrusted
subjects. We described the PRIMA implementation, its in-
tegration with SELinux, and its ability to measure informa-
tion flow, particularly the CW-Lite integrity property that
can be achieved in practice. We also demonstrated how the
key problems are resolved through PRIMA measurement. In
the future, we will examine specific the specific verifications
necessary for some common SELinux systems.

8. REFERENCES
[1] Martin Abadi, Edward Wobber, Michael Burrows, and

Butler Lampson. Authentication in the taos operating
system. In Proceedings of the 14th ACM Symposium
on Operating System Principles, pages 256–269, The
Grove Park Inn and Country Club, Asheville, NC,
1993. ACM Press.

[2] National Security Agency. Security-Enhanced Linux.
http://www.nsa.gov/selinux/.

[3] W. Arbaugh, D. Farber, and J. Smith. A secure and
reliable bootstrap architecture, 1997.

[4] K. J. Biba. Integrity considerations for secure
computer systems. Technical Report MTR-3153, Mitre
Corporation, Mitre Corp, Bedford MA, June 1975.

[5] W. E. Boebert and R. Y. Kain. A Practical
Alternative to Hierarchical Integrity Policies. In
Proceedings of the 8th National Computer Security
Conference, Gaithersburg, Maryland, 1985.

[6] D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security policies. In
In Proceedings of the 1987 IEEE Symposium on
Security and Privacy, Oakland, California, April 1987.

[7] MITRE Corporation. MITRE - Security–Enhanced
Linux. http://www.mitre.org/tech/selinux/.

[8] Tresys Corporation. SETools Policy Tools for
SELinux.
http://www.tresys.com/selinux/selinux policy tools.shtml.

[9] Dorothy E. Denning. A lattice model of secure
information flow. Commun. ACM, 19(5):236–243,
1976.

[10] Paul England, Butler W. Lampson, John Manferdelli,
Marcus Peinado, and Bryan Willman. A trusted open
platform. IEEE Computer, 36(7):55–62, 2003.

[11] H. Maruyama et al. Trusted platform on demand.
Technical Report RT0564, IBM TRL, 2004.

[12] Timothy Fraser. Lomac: Low water-mark integrity
protection for cots environments. In In Proceedings of
the 2000 IEEE Symposium on Security and Privacy,
page 230, Washington, DC, USA, 2000. IEEE
Computer Society.

[13] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel
Rosenblum, and Dan Boneh. Terra: A virtual
machine-based platform for trusted computing. In
Proceedings of the 19th Symposium on Operating
System Principles(SOSP 2003), October 2003.

[14] Trusted Computing Group. Trusted Computing
Group: TPM.
https://www.trustedcomputinggroup.org/groups/tpm/.

[15] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang.
Analyzing integrity protection in the SELinux example
policy. In Proceedings of the 12th USENIX Security
Symposium, pages 59–74. USENIX, August 2003.

[16] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang.
Resolving constraint conflicts. In SACMAT ’04:
Proceedings of the ninth ACM symposium on Access
control models and technologies, pages 105–114, New
York, NY, USA, 2004. ACM Press.

[17] David Safford. Trusted linux client. http://www.acsa-
admin.org/2004/workshop/David-Safford.pdf.

[18] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and
Leendert van Doorn. Design and implementation of a
tcg-based integrity measurement architecture. In
Proceedings of the 13th USENIX Security Symposium,
August 9-13, 2004, San Diego, CA, USA, pages
223–238, 2004.

[19] Umesh Shankar, Trent Jaeger, and Reiner Sailer.
Toward automated information-flow integrity for
security-critical applications. In In Proceedings of the

13th Annual Network and Distributed Systems
Security Symposium. Internet Society, 2006.

[20] Elaine Shi, Adrian Perrig, and Leendert van Doorn.
Bind: A fine-grained attestation service for secure
distributed systems. In In Proceedings of the 2005
IEEE Symposium on Security and Privacy, pages
154–168, 2005.

[21] Sean W. Smith. Outbound authentication for
programmable secure coprocessors. In ESORICS ’02:
Proceedings of the 7th European Symposium on
Research in Computer Security, pages 72–89, London,
UK, 2002. Springer-Verlag.

