
Doppelganger: Better Browser Privacy Without the Bother

Umesh Shankar
ushankar@cs.berkeley.edu

UC Berkeley

Chris Karlof
ckarlof@cs.berkeley.edu

UC Berkeley

ABSTRACT
We introduce Doppelganger, a novel system for creating and en-
forcing fine-grained, privacy preserving browser cookie policies
with low manual effort. Browser cookies pose privacy risks, since
they can be used to track users’ actions in detail, but some cookies
also enable useful functionality, like personalization features. Web
browsers currently lack an effective cookie management mecha-
nism. Users must choose between two unpalatable options: a per-
missive, privacy-compromising policy for every site they visit, or
a seemingly endless series of questions to which they must supply
underinformed opinions. Doppelganger takes a big step forward: it
makes automated determinations of cookies’ value to enable a cost-
benefit analysis, and offers an automated recovery system when
that mechanism—or the user—makes an incorrect judgment. Dop-
pelganger leverages client-side parallelism to automatically and si-
multaneously explore multiple cookie policies, enabling each user
to create her ideal cookie policy. We tackle important and difficult
subproblems along the way: mechanisms for recording and replay-
ing web sessions; improved handling of third-party cookies; and
enforcing fine-grained, per-site cookie mediation. We implemented
Doppelganger as a Firefox extension; we discuss experimental re-
sults comparing it to various browser settings, as well as lessons
learned from the real-world engineering challenges we faced in our
implementation.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communication Ap-
plications – Information Browsers

General Terms
Security, Human Factors

Keywords
Cookies, Web Privacy, Usable Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

1. INTRODUCTION

1.1 Background
An HTTP cookie (from here on, simply “cookie”) is a small data

item sent by a web site to a web browser, then sent back to the
originating site on subsequent requests. While the original intent of
cookies was to provide a session state mechanism for the stateless
HTTP protocol, cookies have since been used not just for things
like shopping carts and authentication, but also for tracking users’
web surfing habits and building targeted advertising profiles. The
result is that site operators or third parties can gain undesirable in-
sight into users’ habits and browsing history. Cookies can iden-
tify a user at sites where she believes herself to be anonymous and
track her actions across sites and browsing sessions. The problem
is exacerbated if web sites can correlate the collected data to users’
real-world identities.

The difficulty, therefore, is in deciding which cookies are worth
accepting and which are not. Ideally, a user should be able to com-
pare the privacy cost of a cookie with the functionality benefit the
cookie enables. Most users are not equipped to make these de-
cisions manually and accept the global defaults in their browsers,
which often apply a single policy to all sites. These defaults tend
to err on the side of functionality rather than privacy. Since web
site features such as shopping carts and logins often require cook-
ies and users may become confused or annoyed if these features
don’t work, the default policies liberally accept cookies. Although
this approach will minimize users’ frustration, it will also accept
many useless tracking cookies which unnecessarily violate users’
privacy. Our goal is to get the best of all worlds: a cookie pol-
icy that protects users’ privacy while simultaneously retaining the
desired functionality and, perhaps most importantly, not pestering
users so much that they disable the system.

1.2 A solution: Doppelganger
We introduce Doppelganger, a web browser privacy tool to help

each user formulate her ideal cookie policy. Doppelganger is a sys-
tem that, in effect, simulates a world in which the user has accepted
cookies and compares it to the (default) world in which the user
has not. If there is no change in the user’s experience between the
two worlds, then we can fairly say that the cookies are not use-
ful. Thus, Doppelganger essentially creates a hidden twin of the
user who is constantly exploring the value of cookies on the sites
the user browses and who informs the user when accepting cookies
may be a good tradeoff; useless cookies are rejected by default, to
preserve privacy. Another key component of Doppelganger is an
automated error recovery module, which users may invoke with a
single click. Error recovery attempts not only to correct the cookie

Goal Mechanism

Automatically determine useful cookies Mirror user session in hidden browser window (the fork window) that accepts additional
cookies; look for differences in output (see Section 3.2)

Detect differences in pages Compare page titles; look for user’s name/ID in mirrored page; see if a click cannot be
mirrored

Determine privacy implications of cookies Parse and interpret site’s P3P policy
Recover from errors Enable additional cookies and replay user session, using information from the log (see

Section 3.3)
Record user session, to enable error recovery Central log of user’s mouse clicks, form field values, and browser state changes (START

and STOP events for each page load)

Figure 1: Summary of Doppelganger’s cookie management mechanisms.

policy, but also takes action to restore the user’s session to a good
state, as though cookies had been accepted from the start.

We followed two main principles in designing Doppelganger.
The first principle is that users don’t like to be constantly inter-
rupted with questions or alerts, and when this happens, they will
tend to disable or ignore the offending mechanism [14, 26]. In par-
ticular, users should not be asked to do anything manually that can
be done automatically. Doppelganger uses client-side parallelism
to explore alternate policies in the background, trying to find those
which result in a positive cost-benefit analysis between privacy loss
and functionality gain. In a perfect world, Doppelganger would be
able to automatically deduce the ideal cookie policy with no user in-
teraction. In reality, some interaction is needed because users have
different privacy preferences and valuations of web site features.
Therefore, we assume it is reasonable to expect users to make a
small number of high-level privacy decisions.

The second principle we followed in designing Doppelganger is
that users don’t care about cookies so much as privacy and func-
tionality. Previous work suggests that: (1) the lack of privacy in-
formation in an easily-digestible form may be a significant obstacle
to achieving good outcomes for users [1]; (2) users are sensitive to
privacy protections, and are more willing to accept a privacy risk
if data about them is protected [11]; and (3) users are willing to
compromise some amount of privacy if they are offered meaningful
incentives to do so [15]. Doppelganger seeks to address all these
issues. Instead of requiring users to make uninformed low-level de-
cisions about cookies directly, Doppelganger reformulates cookie
decisions as cost-benefit analyses between privacy loss and func-
tionality gains, which are presented to the user. This enables users
to make informed decisions regarding their privacy and accept pri-
vacy loss when there is commensurate compensation.

1.3 Contributions:

• We introduce Doppelganger, a system for creating and en-
forcing fine-grained, privacy-preserving cookie policies with
low manual effort.

• We show that Doppelganger improves the handling of third-
party cookies in Firefox, especially with respect to redirec-
tion and inline frames.

• We show how to use client-side parallelism to explore multi-
ple cookie policies simultaneously and find the right balance
of privacy and functionality for each user.

• We leverage concepts from Recovery Oriented Computing [5]
to implement an automated single-click recovery mechanism.

• We present empirically tuned algorithms for recording and
replicating user actions.

• We evaluate the effectiveness of Doppelganger in establish-
ing functional and privacy-preserving cookie policies for typ-
ical web browsing habits and compare the results against those
obtained with available browser settings.

We summarize Doppelganger’s cookie management mechanisms in
Figure 1.

2. HTTP COOKIES
HTTP cookies are a general mechanism for web servers to store

and retrieve persistent state on web clients [21]. Since HTTP is a
stateless protocol, cookies enable web applications to store persis-
tent state over multiple HTTP requests. For example, web shopping
applications can use cookies to track which items a user adds to her
shopping cart.

When a client makes an HTTP request to a server, the server has
the option of including one or more Set-Cookie headers in its
response. Clients will return these cookies in subsequent HTTP
requests using the Cookie header. The Set-Cookie header
has one required field, a name/value pair of the form NAME =
V ALUE. A web server uses this field to encode the state infor-
mation it wishes to store on the client. There are also four optional
fields: expires=DATE, domain=DOMAIN , path=PATH

PREFIX , and secure.
The expires field indicates how long the cookie is valid. After

that date, the client’s web browser should delete the cookie. If the
expires field is omitted, then the cookie is called a session cookie
and should be deleted when user closes the web browser. Cookies
with an expires field are called persistent cookies.

The domain and path fields indicate for which HTTP
requests clients should send back cookies. To determine
which cookies to include with an HTTP request, the client
searches its cookie jar for cookies for domains which suffix-
match the domain of the request and paths which prefix-
match the path of the request. For example, if the user
requests the URL http://online.foobar.com/store/
index.html, then a cookie with domain=.foobar.com and
path=/store would be included with this request, but a cookie
with domain=pics.foobar.com would not. The same-origin
policy in web browsers prohibits one domain from setting cookies
for another. The final optional field, secure, indicates whether
the cookie should be only sent over encrypted HTTPS connections.

Cookies are also characterized by the context in which they are
sent or received. Suppose a user clicks on a link for a particu-
lar document, and then the web browser issues a request for that

document. After the browser receives the HTML page from the
web server, it parses the page for references to elements needed to
render the page, and issues additional HTTP request for these ele-
ments. Examples of additional elements include images, Javascript
files, stylesheets, Flash objects, and sub-documents. Some of these
requests may be to the same domain of the requested document,
but some requests may be to different domains. The latter is of-
ten the case with advertisements. Content whose URL matches the
domain of the main page (i.e., the one in the URL bar) is consid-
ered to be first-party. All other elements are in third-party con-
text. For example, if a user is visiting www.x.com, then content
served from *.x.com is first-party, whereas content on the page from
www.y.com, such as an ad, is third-party.

2.1 Uses of cookies
Cookies have many purposes: session state, personalization, au-

thentication, and tracking. Web sites use cookies for personaliza-
tion to remember users’ preferences and settings. For example,
Google allows users to customize the format of their search results
and uses cookies to remember these preferences. Web sites with
user accounts also use cookies to authenticate users’ sessions [12]:
after a user logs in, a web site can set an session cookie on the user’s
machine to authenticate her subsequent requests. Web sites can set
persistent cookies to remember users and not require a login on sub-
sequent visits. Lastly, web sites can use cookies to track users and
their actions. For example, e-commerce sites can track customers’
browsing history to make purchase suggestions, and advertising
sites can track users to conduct targeted advertising. However,
tracking cookies have troubling privacy implications. By tracking
the pages a web surfer visits, the web searches she makes, and the
items she browses and purchases, web site operators and Internet
advertisers can construct sophisticated profiles of users for targeted
advertising, data mining, and information sharing with other com-
panies.

Tracking cookies also make cookie management difficult. Many
users might prefer not to accept tracking cookies due to the privacy
risks; recent studies [19] have found that about 58% of users have
deleted their cookies at some point. To prevent her web surfing
habits from being tracked, a privacy-conscious user might decide
not to accept or send any cookies, but blocking all cookies causes
a significant loss in functionality on the web. Most web mail ser-
vices, e-commerce, and banking sites require users to accept and
send cookies for authentication, and blocking cookies also denies
users personalization features. Blocking all cookies is consequently
impractical for most users.

2.2 Web browser cookie management
Rather than blocking all cookies, the average privacy-conscious

user would probably be willing to accept some cookies from the
web services she derives some benefit from, but would like to block
cookies that compromise her privacy “too much” or provide her
no value. Sadly, web browsers provide few useful options to users
who wish to customize their cookie settings to this end. Users can
configure their browsers to accept only first-party cookies, accept
only session cookies, prompt for a decision, and combinations of
the above policies.

These options are inadequate. Accepting only first-party cookies
is a good start; most web sites do not require clients to accept third-
party cookies to operate correctly and advertising companies such
as DoubleClick use advertisements and web bugs [3] in conjunc-
tion with third-party tracking cookies to correlate users’ web brows-
ing across multiple sites. However, current web browsers’ imple-

mentations of a “first-party only” policy fall short of expectations.
For example, Firefox misclassifies IFRAME content as first-party,
so advertisers embed ads in IFRAMEs [23] to trick browsers into
accepting and sending their otherwise third-party cookies. Also,
click-tracking services and advertisers use HTTP redirection [22] to
evade third-party cookie blockers. Suppose www.xyz.com hires
a click-tracking service www.trackyou.com to record statistics
about its site usage. As a user navigates www.xyz.com, say by
clicking on a link that seems to point to news articles on www.
xyz.com, the target of the link may actually be something like
www.trackyou.com/redirect?target=www.xyz.com/
news.html. The user’s request first visits www.trackyou.
com, enabling www.trackyou.com to record the request and
then redirect the browser to the real target, www.xyz.com/news.
html. However, since the first request is for www.trackyou.
com, a browser with a first-party only cookie policy will allow
www.trackyou.com to set a cookie on the user’s machine. The
danger here is that if a third site www.abc.com and www.xyz.
com both use the same click-tracker www.trackyou.com, this
enables www.abc.com and www.xyz.com to collude with www.
trackyou.com to determine their common users and track their
browsing habits. Furthermore, if a user has an account on either
www.xyz.com or www.abc.com that reveals her real name, this
enables both sites to associate her browsing history with her real
identity.

Accepting only session cookies also seems like a good idea, since
it limits the ability of web sites to track users across browsing ses-
sions. However, blocking all persistent cookies denies users the op-
tion of web site personalization and authentication without logging
in or another more heavyweight solution. In addition, broadband
connections and more effective computer power management make
it convenient for users to leave their computers on and browsers
open for longer time periods. We anticipate these factors will in-
crease the length of users’ average browsing session. A session
cookie used over the course of a long browsing session (say, a week)
could violate a user’s privacy as much as a persistent cookie.

The only existing option for users who want a fine-grained cookie
policy is for the web browser to prompt the user for every decision.
With this policy, when the browser receives a cookie from a web
site foo.com, it opens a dialog notifying the user it has received a
cookie from foo.com, and asks the user whether it should accept
the cookie, accept the cookie for each session only, or block it. The
dialog also offers the option to apply the decision to every cookie
from the same domain. Although in theory this mechanism enables
the user to tailor her cookie policy at a fine level of granularity,
the usability costs are severe [18]. First, despite the option for the
browser to remember her decisions for each domain, a user will
often receive a barrage of these interruptive dialogs in a browsing
session. Second, although the dialog informs the user that a web
site is trying to set a cookie, the user is given no information on how
the cookie will be used by the web site and must often make policy
decisions before she has even viewed the site’s home page. If a
user makes a mistake in her policy (e.g., deciding to block cookies
at a site she later needs authenticator cookies to login), she must
navigate several confusing browser menus (up to three levels deep)
to correct her decision. Also, choosing which cookies to accept
is non-obvious. She may know she needs to enable cookies for a
particular domain to make it “work”, but should she enable session
cookies or persistent cookies? A user may discover she must enable
cookies after she has already taken a series of actions on the web
site. In the worst case, she must repeat all these actions after she

makes the necessary changes in the browser settings to correct her
cookie policy.

2.3 “This site requires cookies”
Web sites do little to help with the cookie management problem.

A web site can easily detect whether a particular user’s browser will
accept or deny cookies by using Javascript or a series of redirects.
Many sites require cookies. If such a site detects the user is block-
ing cookies, it will inform the user that she must enable cookies to
use the site and give the user instructions on how to enable cookies.
The directions given by many web sites, however, instruct the user
to enable cookies for all web sites, including third-party cookies.
This sort of directive is easy for sites to issue, but can have big con-
sequences for the hapless user’s privacy not only at that site but ev-
ery one the user visits. Naturally none of these negative effects are
suffered by the site giving the instructions. Furthermore, few web
sites give users information on how the site makes use of cookies.
Without this information, users cannot easily decide whether they
should accept cookies from the site.

2.4 Cookie management: The state of the art
Previous work does little to help users make informed decisions

about cookie policies. Several Firefox extensions try to make the
user interface for managing cookies less cumbersome. Cookie But-
ton [8], Cookie Toggle [10], and Permit Cookies [20] add tool-
bars and enable keyboard shortcuts to help users quickly change
cookie policies for the current domain. Add’n’Edit Cookies [2],
Cookie Culler [9], and View Cookies [25] add shortcuts to easily
view and delete cookies stored for a particular domain. Although
these tools help alleviate the difficulty and annoyance of navigating
the browser menus to change cookie policies and view previously
set cookies, their focus is still on the low-level mechanism of cookie
management, which few users understand and fewer still know how
to manipulate. They do not help users decide the correct policy for
a domain, nor do they cast the problem in more intuitive terms. A
much more promising system is Acumen [13], which works on so-
cial recommendations for accepting cookies; users are notified how
many other users accept the cookies in question. This system does
not protect users’ privacy itself, though, as it does central data col-
lection of users’ choices. It also does not take into account users’
inability to make good choices without information. Such a sys-
tem, with appropriate anonymization, is complementary to ours and
could serve as another line of defense before users are burdened.

The Platform for Privacy Preferences (P3P) Project [24] is a pro-
tocol developed by the World Wide Web Consortium to help inform
users of the privacy guarantees of the web sites they visit. P3P
envisions users configuring their web browsers with specifications
of their privacy requirements while surfing the web. Then, when
a user visits a web site, that site will send a compact P3P policy
specifying how it uses personal information, and the browser will
determine whether the user’s and site’s policies are compatible. If
not, the browser would inform the user of the incompatibility. P3P
seems useful for helping users make informed decisions about their
cookies policies, but in practice P3P has many problems [7]. Com-
panies have been reluctant to adopt its complicated protocol struc-
ture, policy configuration is cumbersome for users, and the barrage
of privacy warnings and notifications while web browsing becomes
burdensome and confusing. Recently, though, there are more tools
for writing and understanding P3P policies [4, 6, 16], and we hope
that either P3P or some other privacy standard emerges to help us
accurately gauge privacy risks.

Felten et al. have explored techniques to increase users’ periph-

eral awareness of cookies and improve their ability to make in-
formed decisions about cookie policies [18]. Their Cookie Watcher
tool notifies users of cookie events and gives some limited infor-
mation on the risks of accepting cookies. For example, it notifies
users that a third-party persistent cookie could be used to track users
across sites and web browsing sessions. Although Cookie Watcher
may help users understand the risks of accepting cookies from a
web site, it does little to help users evaluate the benefits of accept-
ing a cookie. Likewise, Bugnosis [3] alerts users to the presence
of “web bugs”—invisible images used for tracking, sometimes via
cookies—but does nothing to mitigate their effect.

3. HOW DOPPELGANGER WORKS
If a user wants to decide whether or not a particular cookie is ben-

eficial, she must determine whether the benefit she receives from
accepting the cookie outweighs the attendant privacy loss she suf-
fers. Thus, her ideal cookie policy is one that accepts only those
cookies for which the cost-benefit analysis yields a positive result.
Although each user values privacy risks and functionality gains dif-
ferently, we want to avoid interruption when the answer is clear.

To this end, we developed Doppelganger, a web browser privacy
tool to help each user perform this cost/benefit analysis and formu-
late her ideal cookie policy. Doppelganger’s main goal is to identify
useful cookies and their privacy implications automatically. Dop-
pelganger relies on the following principle to identify useful cook-
ies: if a cookie from a domain confers some benefit, it should be
evident in the user’s experience. If no such benefit is found, then
we may assume that cookies from that site may be blocked.

Doppelganger uses two main techniques to identify cookies ben-
eficial to the browsing experience: mirroring and user initiated error
recovery. Network bandwidth and CPU power have been increas-
ing rapidly, and web browsing clients often have excess bandwidth
and CPU available. We leverage that spare bandwidth and comput-
ing power to take a “partial derivative” with respect to the cook-
ies whose benefit we are trying to measure. When Doppelganger
encounters a domain in the user’s browsing session for which it
hasn’t determined a cookie policy, it mirrors the user’s web session
in a hidden parallel session whose only difference is the cookies
accepted and sent. We refer to this hidden parallel session as the
fork window since it represents a forking of the browser state. Cor-
respondingly, we refer to the cookies speculatively used by the fork
window as fork cookies. We show an overview of Doppelganger’s
architecture in Figure 2.

When Doppelganger detects a difference between the main win-
dow and fork window, it reveals the fork window and asks the user
to compare the two. The benefit of the fork cookies is any advanta-
geous service present in the fork window which is not in the user’s
main browsing window. To evaluate the cost of these fork cook-
ies, Doppelganger provides the user a condensation of the domain’s
P3P policy (if available) and a description of the kind of tracking
enabled by the cookie. Doppelganger records the result and auto-
matically uses it for future cookie policy decisions for that domain.

The second technique Doppelganger uses to identify beneficial
cookies is user initiated error recovery. The user interface for this
error recovery is a single button labeled Fix Me on the browser
status bar. Fix Me is a rewind-and-playback mechanism. Dop-
pelganger maintains a log of a user’s actions and browser state
changes, and invokes the Fix Me mechanism when the user indi-
cates to the system that something is wrong, perhaps due to an er-
ror message or missing functionality which the mirroring system
missed. The idea is that if a lack of cookies was the problem, then

Figure 2: An overview of Doppelganger. Doppelganger mirrors the user’s web session in a hidden fork session whose only configura-
tion difference is the cookies accepted and sent. When Doppelganger detects a difference between the contents of the main window
and fork window, it reveals the fork window and asks the user to compare the two (see Figure 5). Doppelganger also maintains a log
of the user’s actions for error recovery.

we may enable cookies and replay the user’s actions, simulating
what the user’s session would have been if cookies had been en-
abled in the first place enabled.

Doppelganger can operate in three different configuration modes:
high paranoia, medium paranoia, and low paranoia. These modes
differ primarily in how Doppelganger handles session cookies. The
privacy loss of most session cookies is relatively small, but some
uses of session cookies pose higher privacy risks (Section 2.2). In
low paranoia mode, Doppelganger accepts all first-party session
cookies for all domains, and in medium and high paranoia modes,
Doppelganger determines a per-domain policy for session cookies.
In all modes, Doppelganger determines a per-domain policy for per-
sistent cookies. We discuss these modes and their usability trade-
offs in more detail in Section 3.4.

We implemented Doppelganger primarily as a Firefox extension
in about 6000 lines of Javascript code. We also made a small (30
line) change to the main C++ source code, which we have submitted
for inclusion into the mainline. Since Doppelganger is implemented
in Javascript, it is portable to any operating system on which Firefox
runs. The primary user interface is limited to the Fix Me button on
the browser taskbar. For debugging purposes, we appended a tab to
the LiveHTTPHeaders extension [17], used for watching HTTP re-
quest and response traffic, that enabled us to monitor and configure
our system.

3.1 An example
Before discussing Doppelganger in detail, we first present a more

elaborate example of Doppelganger in operation where a user inter-
acts with a fictitious web site www.xyz.com. To illustrate all of
Doppelganger’s features, we assume Doppelganger has been con-

figured in high paranoia mode, the most conservative configuration.
At the end of the example, Doppelganger will have determined a
complete cookie policy for www.xyz.com.

Suppose a user visits an e-commerce site, www.xyz.com, for
the first time. The default policy for the main user window in Dop-
pelganger is to block all cookies. At the same time, the hidden
fork window will also visit www.xyz.com, but will accept (and
send back) first-party cookies from the site, with the aim of decid-
ing whether first-party session cookies from www.xyz.com are
beneficial. For the next few page loads on www.xyz.com (de-
tails, Section 3.2), Doppelganger mirrors each user action and form
field value in the fork window (Section 3.5); after each page load,
Doppelganger compares the resulting main and fork windows for
differences, and alerts the user if it judges them significant.

Suppose the user adds an item to her shopping cart, an action
which requires cookies to be enabled. The fork window will con-
tain the shopping cart page, but the main window will remain on
the item page (a common failure mode). Doppelganger will detect
the two pages as different, triggering a user-choice dialog.1 Dop-
pelganger displays the primary window and fork window side-by-
side. A dialog box will give an estimation of the privacy risk from
switching to the fork window (the cost) and the user can see what
additional features are offered on the fork side (the benefit; in this
case a functioning shopping cart). The user can then choose one
of three options: switch to the fork side and accept the cookies,
stay with the main browser and reject the cookies, or defer judg-
ment and continue mirroring. Let us assume the user chooses to
switch to the fork window, accepting the cookies. Since the user in-
dicated that first party session cookies provided some benefit, Dop-
1Low and medium paranoia modes eliminate this dialog box.

(a) In the first session, the user must accept session cookies
to add an item to her cart, but Doppelganger disables them by
default. The mirroring process automatically detects this and
offers the user the choice to switch to the fork browser, which
shows the desired shopping cart.

(b) In the second session, Doppelganger accepts session cook-
ies in the main window per the earlier decision. The fork
window also sends back persistent cookies to test their ben-
efit. Doppelganger finds no difference between the fork and
main windows, so it assumes persistent cookies are unnec-
essary and appends a rule to block persistent cookies to the
policy for www.xyz.com.

Figure 3: Graphical representation of mirroring for the example in Section 3.1.

pelganger records the decision to accept first-party session cookies
at www.xyz.com for future sessions.

While the user has indicated that first-party session cookies from
www.xyz.com have benefits, Doppelganger still hasn’t determined
whether first-party persistent cookies from www.xyz.com offer
any benefits. However, Doppelganger will store first-party persis-
tent cookies from www.xyz.com from this session in a separate
fork cookie space for additional investigation during the next ses-
sion. Now, suppose the user ultimately decides not to purchase the
item yet, and closes her browser.

During her next session, she navigates to www.xyz.com again.
The browser has deleted the www.xyz.com session cookies from
the previous session, and Doppelganger is keeping the www.xyz.
com persistent cookies aside in the fork window’s cookie space.
To determine if those persistent cookies have value, Doppelganger
repeats the mirroring process again. This time, the main window
accepts session cookies as per the earlier decision, but the fork win-
dow not only accepts new session cookies but also sends the per-
sistent cookies it received before. For our example, let us say that
the persistent cookies do not enable any additional features. After
the user has visited a few pages on the site, if Doppelganger does
not detect significant differences between the fork window and the
main browsing window, it will decide that persistent cookies are
not necessary. Doppelganger will record the decision automatically
and stop the mirroring without any user interaction.

The persistent cookies in the fork window will, however, be re-
tained for future error recovery if the user later finds that some
desired feature does not work. Suppose that the user had entered
some personalization features in her first browsing session at www.
xyz.com which affect the browsing experience in relatively subtle
ways that Doppelganger missed. The user may notice this problem
after Doppelganger already made an automatic policy decision to
reject persistent cookies for www.xyz.com. Doppelganger pro-
vides the Fix Me button on the status bar of the main browsing win-
dow to recover from these errors. When the user presses Fix Me
while browsing www.xyz.com, Doppelganger rewinds the user’s
browsing session on www.xyz.com, enables the next most per-
missive cookie acceptance policy (in this case, accepting first-party
persistent cookies), and automatically replays the user’s session at

Figure 4: An example use of Doppelganger’s error recovery
mechanism. Suppose either Doppelganger or the user made a
decision to not accept cookies at a particular site, but it turns
out cookies are needed to maintain a shopping cart. If needed,
the user can indicate that cookies may be needed by clicking
the Fix Me button; Doppelganger rewinds to the start of the
session at the site, enables cookies, and replays all the user’s
actions without any further user intervention.

www.xyz.com. The user gets the same final page as when she
pressed Fix Me, but now with any additional benefits of sending
the www.xyz.com persistent cookies received in the first brows-
ing session. We discuss Doppelganger’s error recovery mechanism
further in Section 3.3.

3.2 Mirroring
In this section we discuss Doppelganger’s mirroring system in

more detail. During a user’s browsing session, Doppelganger ob-
serves all page loads in the main window. When it encounters a
page load for a domain for which it has doesn’t have a complete
policy, it begins to mirror the session in the fork window. Doppel-
ganger mirrors the session by replicating the user’s main window
actions in the fork window and then looking for differences be-
tween the two. Mirroring user events is non-trivial; we discuss it
in depth in Section 3.5. In the rest of this section, we will describe

(a) Main window (b) Comparison dialog (c) Fork (mirroring) window

Figure 5: A screenshot of the Doppelganger’s comparison dialog. When Doppelganger detects a significant difference between the
main and fork windows, it prompts the user for a decision. Doppelganger provides some indication of the difference and a measure
of the privacy risk from accepting cookies. In this case, Doppelganger detects the presence of a personalization feature and alerts the
user to it.

how Doppelganger formulates cookies policies and how it main-
tains two separate cookies spaces for the fork and main windows.
We then show how Doppelganger uses the fork window to make au-
tomatic decisions affecting the cookie policy and expose additional
functionality enabled by cookies to the user.

3.2.1 Fork window cookie policies and cookie name
spaces

Doppelganger formulates cookie policies based on tail domains.
Tail domains are the last two components in the host name of URLs
(e.g., yahoo.com).2 Doppelganger applies the same cookie policy
to all cookies and pages matching the tail domain.

Doppelganger enforces one of five possible first-party cookie poli-
cies for each tail domain D:

Policy Session Cookies Persistent Cookies
P?,? ? ?
PS,? accept ?
PS,P accept accept
PS,X accept downgrade
PX,X deny deny

In the table, “?” means that Doppelganger does not yet know
the correct policy for D, and “downgrade” means that persistent
cookies are converted to session cookies.

Doppelganger currently blocks all third-party cookies because
we have not encountered any sites where they provide any benefit,
although it is capable of enforcing third-party cookie policies on
a per-site basis. If we discover some sites for which third-party
cookies prove beneficial, we can easily enable that feature.3 Note
that since Doppelganger enforces per-site policies, enabling third-
party cookies for one site would only allow tracking with other sites
2There is much debate over the right way to decide how many trail-
ing domain name components to use; presently we use a simple
heuristic, as do most browsers, to use an additional component for
international TLDs (two letter suffixes).
3Since a site’s context can be out of its control, such as being in-
cluded in a frame by another site, an intended first-party cookie can
become a third-party cookie. It is uncommon for external docu-
ments that are not advertisements to be put in frames, and many
sites do not work properly when framed in any case.

that also had third-party cookies enabled. This is in sharp contrast to
browsers’ settings, which have only global policies for third-party
cookies.

There is another problem related to third-party cookies: the mech-
anism Firefox uses to identify third-party cookies is vulnerable to
IFRAME [23] and redirection [22] tricks. IFRAMEs are entire doc-
uments embedded in HTML pages, and for various reasons, Firefox
incorrectly determines the context of HTTP requests generated by
IFRAMEs. For the purposes of cookie management, Firefox clas-
sifies an IFRAME request as an independent request for a top-level
HTML page rather than as a request for an element of a larger page.
Therefore, Firefox classifies cookies for IFRAME requests as first-
party instead of third-party with respect to the enclosing page. Dop-
pelganger addresses the IFRAME problem by more reliably deter-
mining the context of an HTTP request by matching its tail domain
against that of the topmost page’s URL. We discuss the counter-
measure to redirection tricks in Section 3.2.5.

In order to send different sets of cookies to the main window
and the fork window, Doppelganger partitions the cookie space to
allow multiple copies of a cookie with a specific NAME=VALUE
pair and impose different access controls on them. Doppelganger
achieves this by implementing nsICookieConsent, an optional
Firefox interface designed for deferring cookie policy decisions to
an external module. Its original intention was for use with P3P, but
that functionality has since been disabled. nsICookieConsent
was designed to be applied to classes of cookies at once, since the
browser’s controls do not have provisions for individual cookies.
However, Doppelganger must impose differential access controls
according to the particular cookie being set and which window
(fork or main) is using it. Addressing this problem required a small
change to the interface and a small (30 line) change to the main
C++ source code to use this new interface.

3.2.2 Mirroring in the fork window
When the user visits a domain D, Doppelganger checks its cookie

policy for D. If it has a complete policy (i.e., PS,P , PS,X , or
PX,X), Doppelganger does no mirroring and simply applies the
policy to the main window. Suppose Doppelganger has no pol-
icy for D (e.g., it is the user’s first visit to the domain). Then
the fork window starts sending and receiving first-party cookies for

P
?,? P

S,?

P
X,X P

S,X

P
S,P

����������	
�
���������������

���������

�������	
�����	��
��������������
�����	���

�������	
�����	��
���������������
���
������	��������	�

�������	����������	

����������	
�
���������������

���������

�������	
�����	��
��������������
�����	���

�������	
�����	��
���������������
��

�����������
��	��������	

Figure 6: How Doppelganger determines a cookie policy for a domain during the mirroring process. When Doppelganger detects a
difference between the main and fork windows, it prompts the user to decide whether the additional features are worth the potential
privacy risk. Doppelganger makes an automatic policy decision if it does not detect any differences after max steps page loads. We
omit some additional transitions present in low and medium paranoia modes (see Section 3.4).

that domain. Doppelganger mirrors the user’s actions for a constant
number (max steps) of page loads on D and monitors the fork win-
dow for differences. If it detects no difference after max steps page
loads, Doppelganger concludes that cookies at D provide no ben-
efit, stops mirroring, and sets the cookie policy for D to deny all
cookies (PX,X).

Alternatively, if Doppelganger detects a difference, it prompts
the user to decide whether the additional features are worth the pri-
vacy risk by attempting to highlight benefits and display privacy
risks. For an example comparison screenshot, see Figure 5. If the
user answers “keep original”, Doppelganger stops mirroring and
sets the cookie policy for D to PX,X . If “switch to alternate”, it
stops mirroring and sets the cookie policy for D to PS,?. Recall
that PS,? accepts session cookies, but has an undetermined policy
for persistent cookies. Doppelganger then transfers the state of the
fork window to the main window to automatically provide the user
the benefit of the cookies. For the remainder of the session, Dop-
pelganger accepts all first-party cookies from D.

Now, suppose the user closes her browser, restarts it the next day,
and revisits D. The policy for D is now PS,? and the browser may
have persistent cookies from D from the previous session. Since
Doppelganger has not yet determined whether persistent cookies
from D are beneficial, it begins to “fork” on these cookies. Dop-
pelganger loads persistent cookies for D from the previous session
into the fork cookie space and clears all of D’s cookies from the
main cookie space. Doppelganger then proceeds as it was when
forking on session cookies, except now, both windows accept ses-
sion cookies instead of just the fork window.

The difference is the fork window may have persistent state from
the previous session which positively affects the user’s experience.
Doppelganger tries to detect this. Again, Doppelganger mirrors the
user’s actions for a constant (max steps) number of page loads on
D and monitors the fork window for differences. If it detects no
difference after max steps page loads, Doppelganger concludes per-
sistent cookies at D provide no benefit, stops mirroring, and sets the
cookie policy for D to block persistent cookies (PS,X). Otherwise,
if it detects a difference, it prompts the user for a decision whether
the difference is beneficial. If the user answers “no”, Doppelganger

stops mirroring and sets the cookie policy for D to PS,X . If “yes”,
it stops mirroring, sets the cookie policy for D to accept persistent
cookies (PS,P), and transfers the state of the fork window to the
main window. We summarize the mirroring process in Figure 6.

Presently, max steps is a constant. We want it to be small enough
that we do not end up effectively accepting more cookies via the
fork window, but large enough to see differences due to cookies.
Large-scale trials are needed to determine a good value; in testing
we set max steps to 5.

3.2.3 Difference detection
Doppelganger must be able to detect when the fork and main

windows significantly differ in function or personalization enough
to warrant interrupting the user for a decision. Doppelganger should
ignore things like advertisements, randomized placement of news
items, or other sources of natural nondeterminism. In our differ-
ence detection algorithm, we must address a tradeoff: if Doppel-
ganger reports too many page pairs are different, the user will be
asked to make too many decisions, whereas if the system fails to
detect meaningful differences, cookies will be rejected too aggres-
sively and the user must detect problems manually and initiate error
recovery (Section 3.3). In both cases the user is needlessly inconve-
nienced. At present we use a coarse mechanism: we compare page
titles (to detect obvious errors) and we look for the presence of the
user’s name or login ID in the fork window (and its absence in the
main window) to detect personalization. In addition, if a user ac-
tion cannot be replicated in the fork window, we assume the pages
are different. A better heuristic is the source of ongoing work. We
do not consider an error in loading a page as a significant differ-
ence; instead the mirroring process re-starts at the next page after
re-syncing the fork window to the main one.

3.2.4 Exposing the cost of cookies
Even beneficial cookies carry privacy risks. When Doppelganger

detects a potential benefit of accepting cookies at a domain D, it
tries to measure and expose the privacy risks when it prompts the
user to compare the fork and main windows. One measure of the
risk is the type of cookies Doppelganger must enable for the user to

benefit (i.e, session or persistent). We also assess risk by interpret-
ing the domain’s P3P policy, if one exists; we borrowed some P3P
parsing code from [4] for this purpose. Doppelganger represents
the privacy risk with two bars, one derived from the site’s privacy
policy, and one representing the risk from the type of cookie al-
lowed. For an example of Doppelganger’s risk assessment during a
comparison, see Figure 5.

3.2.5 Addressing ephemeral site visits
Doppelganger uses a slightly different strategy to address do-

mains which may be visited often but never for very long. This sit-
uation arises in several situations: click-tracking and advertisement
redirect tricks [22] (discussed in Section 2.2), certain web portals,
and search engines. Web portals and search engines contain links
to other domains that are the user’s ultimate goal; in the meantime,
though, the portals use cookies to track the user’s actions. Also,
shopping search portals use redirects through advertising trackers
(e.g., DoubleClick and Dealtime) which set persistent cookies to
track the offsite links that users follow. All these cookies appear to
the browser as, technically, first-party cookies, but we want to block
most of them since they confer no benefit.

The risk is that Doppelganger will perpetually mirror visits to
these sites. Since users will likely never have max steps consecutive
page loads on these domains, Doppelganger will never arrive at a
policy decision for them. Doppelganger would therefore invoke the
mirroring process on every visit to these domains to try to determine
their cookies’ value, in effect enabling cookies forever. To address
this problem, we maintain a lifetime hit count for domains with an
undetermined cookie policy and set the domain’s cookie policy to
PX,X when the hit count exceeds a constant, max visits. We are
still determining an optimal value for this constant; in testing, we
set max visits to 8. The end result is that a policy decision is made
for every site after a finite amount of time.

3.2.6 Logins
Doppelganger optimizes cookie management for sites where a

user logs in. When Doppelganger detects a user logging into a do-
main, it automatically enables session cookies for that domain. The
rationale for this policy is that if a user has a relationship with a site
which requires a login, then accepting session cookies is unlikely
to cause additional privacy loss, and we want to avoid unnecessary
user interruptions. Doppelganger detects logins by looking for form
submissions containing username and password fields.

3.3 User initiated error recovery
The second major component of Doppelganger is user-initiated

automated error recovery. The first line of defense is the mirroring
mechanism described above, but Doppelganger’s comparison func-
tion may be imprecise, mirroring may end prematurely, or the user
may change her mind regarding the cost/benefit of cookies from a
domain. Doppelganger invokes the error recovery mechanism when
the user notices some feature is not working properly, or when she
sees a cookie-related error message Doppelganger did not automat-
ically detect. The user interface is simple: Doppelganger installs
a single button labeled Fix Me on the browser status bar that the
user can click when necessary. Our techniques for error recovery
borrow ideas from Recovery-Oriented computing; in particular, we
use the “Three R” model of recovery introduced by Brown et. al [5]:
Rewind, Repair, Replay.

Doppelganger handles recovery differently depending whether it
is mirroring a session or not. If Doppelganger is mirroring a ses-
sion, it simply uses the mirroring comparison dialog to show the

user what recovery would look like. If Doppelganger is not cur-
rently mirroring a session, it must achieve the same effect. To do
this, Doppelganger enables the next most permissive cookie pol-
icy setting (as the fork window would have) and replays the user’s
session at the current site from the beginning by replaying all user-
initiated UI events (e.g., clicks, form submissions). We do not re-
play across site boundaries.

Of course, strict replaying is not the goal: we want the result to
be different (and better). Doppelganger manages the replay with a
state machine which watches page loads and sends user events. If
Doppelganger cannot replay a user event, an expected page does not
load, or an unexpected page loads, Doppelganger stops the replay.
Since one of these events is evidence of a page not present in the
original sequence, Doppelganger optimistically assumes the prob-
lem is fixed; since the desired outcome is one that we have not yet
seen, there is no way to know if it is the correct one automatically.
If the problem has in fact not been fixed, the user may click the but-
ton again, and Doppelganger will enable the next most permissive
cookie setting (if possible) and replay again. If this, too, fails, then
likely a lack of cookies was not the source of the problem.

There are two problematic cases for replaying. The first is the
nonlinearity of many sessions: what if the user had hit the Back
or Forward buttons during the original session? Our current ap-
proach is to replay those buttons (but not Reloads) during the re-
play as well; this seems to work in practice. Another case is that
of HTTP POST requests. According to the specification, GET re-
quests, the most common kind, are to be used for idempotent re-
quests, and POST requests for non-idempotent ones like transac-
tions. Although we believe the danger is low—after all, if the trans-
action completed, why would the user be invoking the replay?—we
do not replay through POSTs. Some sites abuse the POST request
for idempotent actions, which would block the replay. This misuse
is bad policy, since it makes it difficult for users to go back and
forward, reduces the effectiveness of proxy servers, and reduces
the effectiveness of our replay system while making their users do
more work to accept cookies. Others misuse GET requests for non-
idempotent actions, which is very dangerous since the back and for-
ward buttons can easily and inadvertently trigger the action again;
proxy caching could also break. In short, there are many existing
reasons for sites to use POST and GET requests appropriately, and
if a site does misuse POST or GET, problems will probably surface
regardless of Doppelganger.

3.4 Higher-privacy modes
Always-on Internet connections and more effective power man-

agement have conspired to make very long sessions not only pos-
sible but easy. Accordingly, we have implemented multiple modes
of operation for Doppelganger, characterized by “paranoia level”,
which have different session cookie policies. Low paranoia mode
always accepts session cookies, and is thus the least intrusive, least
private mode. High paranoia never accepts session cookies by de-
fault, using the same mirroring-and-recovery tandem on session
cookies as on persistent cookies. It is the most privacy-preserving,
but most intrusive mode; remember, though, that comparisons only
must be made when the mirroring process detects a difference.

As a compromise between the two, medium paranoia mode uses
mirroring, but when a difference is detected, automatically enables
session cookies without asking the user. Since the privacy risks of
session cookies are generally low, the net benefit of accepting them
is likely positive at a domain where the mirroring process detects a
benefit, and we can avoid interrupting the user to make a decision.
In addition, medium paranoia mode enables session cookies when

Mode Session Cookie Policy Persistent Cookie Policy Notes

Low paranoia Accept all Per-domain Requires least user interaction
Medium paranoia Per-domain Per-domain Automatically enables session cookies on POST or

(never ask user) when a difference is detected during mirroring
High paranoia Per-domain Per-domain Highest privacy; requires the most user interaction

Figure 7: Summary of Doppelganger’s different privacy modes.

a POST request is seen. A main benefit of medium is that it auto-
matically denies cookies from tracking sites which are visited using
redirection, but never requires users to make left-or-right compar-
isons for session cookies. However, if the mirroring process fails
to detect a useful difference, the user may need to use the Fix Me
button. We summarize Doppelganger’s different privacy modes in
Figure 7.

3.5 Replicating individual user actions
In this section we show how Doppelganger replicates the two

dominant types of user interactions in web browsers: mouse clicks
and form submissions. Doppelganger replicates user actions both
during mirroring and during error recovery. In the former case, we
replicate user actions in the fork window immediately as they oc-
cur; in the latter case, we replay a series of actions from the log
into the main window. In both cases, the proximate mechanism of
replication is the same, and we describe the algorithms in this sec-
tion. By replaying at the level of user actions rather than page loads,
relevant Javascript code on the page is triggered automatically.

3.5.1 Mouse clicks
Replicating clicks turns out to be difficult in practice for two

main reasons: document elements do not have unique IDs, and
there is a significant amount of nondeterminism in what results are
returned for a given URL. This latter problem can arise from nat-
urally changing pages, e.g., news sites and search engines, but this
problem also surfaces in advertisements and stochastic link rewrit-
ing for click tracking. The basic click replication mechanism in-
volves three steps: (1) record information about the click; (2) try
to find the matching target in the fork browser; and (3) send the
appropriate click event to the target.

3.5.1.1 Recording the click.
Our goal in recording clicks is to capture enough information

about the click that we can replicate it, and to record it in a way
that tolerates small changes to the document in which it is being
replayed. Our initial algorithm constructed a path in the DOM tree
from the document root to the clicked element and tried to recon-
struct this path in the DOM tree of fork window document. This
approach failed because it was too precise; it could not adapt to
small perturbations in the document. In the end, we used a heuris-
tic refined through experimentation.

First, when the user clicks an element, we record some identify-
ing information about the event:

• The URL of the page in which the click occurred

• If the click was in a frame, the topmost document’s URL

• The HTML tag name of the target of the click (e.g., “DIV”)

• The mouse coordinates of the click (for imagemaps)

• The element’s attributes (e.g, “href”, “id”, “name”)

• The text content within the element

• If it is a form element, information about the enclosing form

• Which mouse button the user pressed

To be more precise, we do not always record the immediate target
of the element; there may be many HTML fragments of the form

click here

for example, and the tag is not interesting for a click perspec-
tive. Instead, we start backtracking to the root of the document to
find the nearest ancestor of the target element which initiates some
action. For example, if the HTML code reads

To get $$, click here

we would record the click on the <A> tag, not the tag. In
general, we stop at elements which have an href attribute, an
onclick attribute, or are input elements of a form. This reduces
ambiguity considerably when trying to replicate the click.

3.5.1.2 Finding a match in the target window.
When Doppelganger replicates a click on an element in the source

window, a primary challenge is locating the analogous element in
the target window. If the web were static, each request for a URL
would yield the same response and the task would be straightfor-
ward. Instead, there is a fair bit of nondeterminism in the responses.
For example, on news sites, a new article may change the locations
of the previous articles. Some search engines rewrite their search
results links to track which ones are clicked most often. We there-
fore implemented a “best-match” algorithm, which compares can-
didate elements against the information recorded about the original
click.

First, we narrow candidates to elements with the same tag name,
e.g., “A” or “INPUT”. We then build a match record for each one,
comparing on several characteristics:

• Exact match (index 0)

• The “id” (1), “href” (2), “name” (3), “type” (4), and “value”
(5) attributes

• The text content of the element (6)

• Information about element’s parent form (if any) (7)

Say the candidate element is E; we denote a characteristic of E

by E.c where c is, e.g., the value of the id attribute. Denote the
log-recorded value of c by O.c.

Then we make a match record R as follows: for each character-
istic c with index i,

R[i] =

8

<

:

0 : E.c 6= O.c

1 : E.c = null ∧ O.c = null

2 : E.c = O.c

Then the best match record is selected by comparing the record
values in order, i.e., Ri[0] vs. R

′

j [0], then Ri[1] vs. R
′

j [1], et seq.
Finally, it may be that the best possible match is not in fact a very

good match. We empirically determined a cutoff in match scores
and only consider the element a match if it passes this cutoff.

3.5.1.3 Mirroring the click.
After we have correctly identified the element in the target docu-

ment, mirroring the click is relatively straightforward. We construct
a click event object and deploy it to the target element. We also pre-
cede each click event with a focus event, as it would be if the user in
fact clicked the mouse on it. This step is important because many
web pages use “onfocus” Javascript handlers to change the page
dynamically when an element is focused.

3.5.2 Forms
In addition to clicks, we must fill in web forms in the target win-

dow with the same data as in the original. Some of the challenges
here are similar to the click problem above, in that forms do not
always have unique identifying information such as a “name” at-
tribute. If the “name” attribute is missing, we use the form’s array
index in the document.forms array; unlike clickable elements,
it is unusual for forms to be added and removed by chance. The
form elements virtually always have “name” properties because that
is how their values are identified when the form is submitted, so
identifying them within a form is easy.

There is a more subtle issue here, though, because forms often
have hidden fields which are meant to be unique for each instance.
Common fields of this sort are session IDs and nonces for password
protocols. We do not modify the values of hidden form fields; in
practice this has not been a problem since the user is only expected
to fill in visible fields anyhow.

We fill in forms in the target document when replicating each
click, not just when the form is submitted. Correspondingly, we
store all form values at the time we record the click information.
This is because Javascript on the page may modify the page based
on the form values prior to submission, sometimes even reloading
the page in response.

3.5.3 Other issues with replicating user actions
One complication we encountered in replicating user actions is

the presence of frames; in the interest of space, a full discussion
is omitted. The main idea for handling frames is that many of the
above techniques can be implemented recursively, effectively treat-
ing all the frames as one giant page.

Another question is how precise to be in recording and replicat-
ing user actions. Omitting certain frequent events yields an effi-
ciency benefit. So far we have not found it necessary to replicate
each keystroke or mouse movement the user makes, although in
principle these are events that the page can handle and respond to.
Most often keyboard events are used either for scrolling or text en-
try, neither of which must be replicated at that granularity.4 Mouse
movement events generally result in, at most, superficial changes
to a page, e.g., a dropdown menu when hovering over an element.
So long as the menu links are accessible through the DOM for the
page, it does not matter if they are visible or not during replay. If
it becomes necessary, we can easily log and replay these events as
well.

4Keyboard shortcuts are becoming more common, and we plan to
record non-navigation keystrokes in the future.

Site(s) Purpose / actions

Yahoo! Check Yahoo! mail, news, TV listings

Netflix Research movie reviews

GMail Check email

CNN Read news

Verizon Wireless Research cell phone plans

Google, etc. Research MP3 player purchase

Figure 8: Summary of browsing session for evaluation.

4. EVALUATION
We evaluated the effectiveness of Doppelganger versus various

built-in browser settings by performing a script of common brows-
ing tasks, summarized in Figure 8. In testing, we simulated a user
who is willing to accept a certain amount of privacy loss for con-
venience at sites with whom he has a relationship (in this case, Ya-
hoo!, Netflix, and GMail) but is more cautious at sites with whom
he has no relationship (CNN, PC Magazine, Vanns.com, Comput-
erHQ.com, BeachCamera.com).

For each setting, we measured (1) the number of sites whose
cookies were accepted, categorized by persistence and context, and
(2) the inconveniences suffered by the user, including dialog boxes
and lost functionality. An ideal scheme would incur a low num-
ber of each. The five settings we tested were four global settings
(same for all sites): (1) All cookies enabled, (2) First-party cookies
only, (3) First-party session cookies only; (4) Ask the user what to
do for each cookie that is sent; and finally (5) using Doppelganger.
We measured the number of sites rather than the number cookies
because multiple cookies of the same type from the same site are
equivalent from a privacy perspective. We executed each script by
hand three times consecutively for each setting, retaining any state
between runs. The idea was to capture the effects of session cook-
ies, persistent cookies, and, for Doppelganger, the change in policy
and behavior over time. We cleared all cookie-related state before
changing settings.

The accepted-cookie results are shown in Figure 9, and the de-
tails of each setting and its corresponding user experience are de-
scribed below. Two values are particularly interesting. The number
of sites setting persistent cookies is significant because they allow
users to be tracked over many sessions, and the number of sites
setting third-party cookies is perhaps more so because they let the
user be tracked across multiple sites. Third-party persistent cookies
combine the worst of both.

There are three ways in which the user can be “inconvenienced”
during our script: he can be asked to answer a browser’s yes-or-no
cookie dialog (see picture); he can be asked a left-or-right browser
decision by Doppelganger (see Figure 5); or he can be forced to
login upon each visit to a site where he has an account. This lat-
ter case occurs when his browser could have accepted a persistent
cookie that would serve as an authenticator, but did not for some
reason.

In the following discussion, we use figures from the last session
of each setting, as that most closely represents a steady-state figure.

4.1 All cookies
This is the default setting in Firefox, and, perhaps predictably

due to its permissiveness, led to the acceptance of the most cook-

Number of sites setting:

Run FP-S FP-P TP-S TP-P Total persistent
cookies cookies cookies cookies (FP-P + TP-P)

All cookies on (Run 1) 9 8 3 13 21
All cookies on (Run 2) 8 8 3 16 24
All cookies on (Run 3) 8 8 3 16 24
FP only (Run 1) 9 8 1 4 12
FP only (Run 2) 8 8 2 5 13
FP only (Run 3) 8 8 2 7 15
FP session only (Run 1) 9 0 9 0 0
FP session only (Run 2) 9 0 6 0 0
FP session only (Run 3) 9 0 8 0 0
Ask user (Run 1) 4 3 0 0 3
Ask user (Run 2) 3 3 0 0 3
Ask user (Run 3) 3 3 0 0 4
Doppelganger (Run 1) 4 0 0 0 0
Doppelganger (Run 2) 3 3 0 0 3
Doppelganger (Run 3) 3 3 0 0 3

FP = “First party” TP = “Third party” S = “Session” P = “Persistent”

Figure 9: Number of sites setting cookies while performing some common tasks. A script of common browsing tasks was run three
times in succession for a variety of cookie management policies, and we measured the number of sites setting various kinds of cookies.
“First party” here refers to sites that the user intended to visit, and “third-party” refers to all other sites.

ies of any setting: 24 sites set persistent cookies, including 16 in
third-party context. Virtually every domain we visited set a persis-
tent cookie (none sent only session cookies). This suggests that any
future browsing sessions would be extensively tracked. The advan-
tage of this permissive policy was that we were never asked any
questions during the session.

4.2 First-party only
Since the danger of third-party cookies was recognized years

ago, many users disabled third-party cookies in their browsers; the
size of this group has forced sites to avoid any dependence on these
cookies. Thus a first-party only setting in the browser is, in practice,
a big win over the “allow all” setting. Indeed, we accepted persis-
tent cookies from a little more than half as many sites as in the
default settting. However, the browser still accepted many cookies
that either do not confer any benefit or were not worthwhile. These
include persistent cookies from 7 sites we did not mean to inter-
act with; these were accepted because of redirection and framing
tricks. Furthermore, there were unneeded cookies from first-party
sites—8 vs. 3 for Doppelganger—since we did not need cookies
from, e.g., cnn.com. The main advantage of first-party only vs.
more restrictive settings is that we were not asked any questions.

4.3 First-party session only
This setting downgrades all persistent cookies to session cookies

with the aim of eliminating long term tracking. It was still vulner-
able to tricks which forced us to accept session cookies from 6 to
9 sites (it varied across runs, because advertisements change) that
we did not mean to interact with. The session-only restriction came
with a significant downside: we were forced to log in to each site
with which we had a relationship during every session, and would
have had to do so indefinitely. All personalization features that do
not require a login would also be lost.

4.4 Ask the user
The final built-in browser setting we tested was one in which

the browser asks the user whether to accept each cookie as it was
offered. This dialog box allowed a decision to apply to all cookies
from the same site, and we checked this box each time to reduce the
number of dialogs.

An example of the dialog box is shown here:

This setting poses something of a dilemma: in principle, we do
not know which cookies to accept and which to deny, especially
since most of the dialogs appear before a site’s home page even
finishes loading. Our solution was to use Doppelganger to deter-
mine which cookies were useful and, thus, always answer questions
correctly, including when to accept persistent cookies and when to
downgrade them to session cookies. While this assumes a some-
what oracular user, it helps put a lower bound on the difference be-
tween Doppelganger and the best-case scenario for existing browser
settings.

Unsurprisingly, the Ask setting resulted in a dramatic reduction
in the number of accepted cookies compared with other browser
settings: there were only 4 sites which set persistent cookies, and
no third-party cookies were accepted.

There was no loss of functionality with this setting, as there was
with the “First-party session only” setting, but there was a signifi-
cant problem: we were shown 26 dialog boxes during our session.
Of these, 13 were due to first-party sites, and 13 due to third-party
sites using various tricks. These dialogs presented almost no infor-

mation to help the user decide whether to accept the cookie, except
for the domain name.

4.5 Doppelganger
Our last test used Doppelganger for cookie management. Un-

surprisingly, the cookie results were virtually identical to the Ask
policy, since we used information gained by Doppelganger to an-
swer the browser’s questions during that trial. The total number of
persistent cookies rose from Run 1 to Run 2 because Doppelganger
reserves judgment on persistent cookies until it can test their useful-
ness in a subsequent session; ultimately, 3 sites’ persistent cookies
were accepted vs. 4 for the Ask setting.

We did not have to answer nearly as many questions using
Doppelganger as we did with Ask. During the first run, there
was a comparison dialog on the netflix.com homepage, be-
cause session cookies were required to use the site. This dia-
log does not appear in low or medium paranoia mode. An er-
ror message at verizonwireless.com prompted a click of
the Fix Me button; this solved the problem without further effort;
this is not necessary in low paranoia mode. During the second
run, yahoo.com, netflix.com, and mail.google.com
(Gmail) all had automatic login features if persistent cookies were
enabled. This resulted in side-by-side comparisons, and in each
case we chose to accept the cookie in exchange for the convenience.
At verizonwireless.com, a persistent cookie remembered
our zip code, prompting a comparison; we chose not to accept a
persistent cookie, because we did not plan to visit the site often.
During the third run, there were no dialogs at all. Indeed, by that
time, Doppelganger had already silently decided not to accept cook-
ies from cnn.com, pcmag.com, and dealtime.com (a site
through which we were redirected each time we clicked on vendors
from pcmag.com).

It is important to note that none of the dialogs we saw would ever
recur; once a decision has been made, it is remembered for future
sessions. While the same is true for the Ask policy, the test script is
heavily weighted towards sites the simulated user has a relationship
with. Thus, new sites the user encounters are likely to be ones with
which there is no relationship or which are visited less frequently,
and thus where cookies are much less likely to have value. This
is significant because the Ask policy pops up dialogs regardless of
cookie value, while Doppelganger does so only if cookies are likely
to be useful, and in fact shows the user how useful, as well as rele-
vant privacy information. Turning on the optimization above would
make the number of Doppelganger dialogs smaller still.

5. WEB SITE COUNTERMEASURES
If Doppelganger becomes widely deployed, web sites might try

to circumvent or fool its mechanisms to store persistent data on
users’ machines. In this section, we discuss various approaches
they might take and how those approaches affect Doppelganger.

5.1 Always require cookies
A web site might require users to always accept cookies by redi-

recting users to an error page if it detects cookies are being blocked.
Many sites currently do this. However, addressing this problem
only requires Doppelganger to accept session cookies from the site,
which have limited privacy risks; and if the user is using low or
medium paranoia mode, Doppelganger will do so automatically.
For very privacy-conscious users in high paranoia mode, Doppel-
ganger will expose the sites’ cookies requirements for inspection.
In addition, web sites might try to require users to accept persistent

cookies by requiring an extensive “sign-up” procedure if it does not
detect a persistent cookie on the user’s machine. This might encour-
age users to accept persistent cookies to avoid repeating this proce-
dure on subsequent visits. However, this approach would likely
alienate users; privacy conscious users may not want to accept per-
sisent cookies or might routinely delete all their cookies, and for
privacy reasons, public kiosks and library terminals must delete all
cookies after each user’s session.

5.2 Cause spurious differences
A web site might try to always create subtle or inconsequental

differences between pages requested with cookies and those re-
quested without cookies to frequently trigger Doppelganger’s com-
parision dialog. A user who receives excessive comparison di-
alogs for a site might become annoyed and decide to accept the
cookies to prevent future interruptions, or worse, disable Doppel-
ganger entirely. Doppelganger’s current difference detection al-
gorithm is simple: we compare the page titles and look to see if
the user’s name or ID is only in the fork browser. Developing so-
phisticated and robust difference detection is important future re-
search for Doppelganger, and we see two promising directions. One
approach is compare pages structurally by examining their DOM
trees. This is based on the assumption that substantive changes
often result in the addition or removal of whole page elements. An-
other complementary approach is a visual comparison, comparing
screen captures of the fork and main windows. Both of these ap-
proaches require filtering advertisements and other sources of ran-
domness before comparison.

5.3 Other persistent objects
If a web site detects its persistent cookies are being blocked, it

might resort to storing other persistent objects on the user’s machine
(e.g., flash objects, images, Javascript) and retrieving these objects
in subsequent sessions. To fully address privacy with respect to
persistent web objects, Doppelganger must apply its cookie policy
for a domain to manage other cached objects from that domain as
well. However, there may be well-intentioned sites that don’t use
cookies at all, but cache web objects on users’ machines to improve
performance. Fully understanding the effect of this approach on the
user’s web browsing experience requires further study.

6. FUTURE WORK
Currently, Doppelganger only has mechanisms to incrementally

relax cookie policies, but not make them more restrictive. Users
may later change their minds about the cost/benefit tradeoff for cer-
tain domains and want to make their cookie policies for those do-
mains more restrictive. Exploring usable mechanisms for “tighten-
ing” the cookie policy is an area for future exploration.

Comprehensive user studies are needed to understand the usabil-
ity of Doppelganger’s mirroring and automated recovery mecha-
nisms. We have recently conducted a controlled user study to ex-
amine the usability and performance of Doppelganger and plan to
publish the results in the near future.

7. CONCLUSION
We introduced Doppelganger, a novel system for creating and

enforcing fine-grained, privacy preserving cookie policies in web
browsers with low manual effort. We showed how Doppelganger
automatically identifies cookies which provide users additional func-
tionality and exposes the costs and benefits of accepting those cook-
ies. As with most markets, more complete information has the po-

tential to lead to more efficient outcomes. In this case, that means
that users will be able to select those sites that offer benefits com-
mensurate with the users’ privacy loss over sites with less favorable
exchanges. Indeed, since subjective feelings of trust in users often
induce users to accept more privacy costs, steps by sites to increase
transparency—such as publishing a useful privacy policy—-may
actually increase the amount of usable personal information they
obtain. In short, we believe that systems like the one we describe
here can lead to better incentives for both parties. Thus, while our
work here certainly does not expose all costs and benefits, and only
deals with one aspect of online privacy (viz. tracking), we believe
that it represents a meaningful step forward down the right path.

Acknowledgements
We would like to thank David Wagner, Marti Hearst, and Doug Ty-
gar for their very valuable insights and suggestions. AJ Shankar,
Naveen Sastry, and Marco Barreno were patient testers and sup-
plied valuable usability feedback. We would also like to thank the
anonymous referees for comments that have helped improve both
the content and form of the paper.

8. REFERENCES
[1] Alessandro Acquisti and Jens Grossklags. Privacy and

rationality in individual decision making. IEEE Security and
Privacy, 3(1):26–33, 2005.

[2] Add & Edit Cookies.
http://addneditcookies.mozdev.org/.

[3] Adil Alsaid and David Martin. Detecting web bugs with
bugnosis: Privacy advocacy through education. In
Proceedings of the 2002 Workshop on Privacy Enhancing
Technologies, 2002.

[4] Fahd Arshad. Privacy Fox - A JavaScript-based P3P Agent
for Mozilla Firefox. http:
//privacyfox.mozdev.org/PaperFinal.pdf,
2004.

[5] Aaron Brown and David Patterson. Undo for operators:
Building an undoable e-mail store. In USENIX 2003 Annual
Technical Conference, June 2003.

[6] Simon Byers, Lorrie Faith Cranor, and David Kormann.
Automated analysis of P3P-enabled web sites. In ICEC ’03:
Proceedings of the 5th International Conference on
Electronic Commerce, pages 326–338, New York, NY, USA,
2003. ACM Press.

[7] Electronic Privacy Information Center and Junkbusters.
Pretty poor privacy: An assessment of P3P and Internet
privacy. http://www.epic.org/reports/
prettypoorprivacy.html, June 2000.

[8] Cookie Button.
http://basic.mozdev.org/cookiebutton/.

[9] Cookie Culler. http:
//cookieculler.mozdev.org/index.html.

[10] Cookie Toggle.
http://cookietoggle.mozdev.org/.

[11] Mary J. Culnan and Pamela K. Armstrong. Information
privacy concerns, procedural fairness, and impersonal trust:
An empirical investigation. Organization Science,
10(1):104–115, 1999.

[12] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos
and Don’ts of client authentication on the web. In 10th
USENIX Security Symposium, pages 251–268, August 2001.

[13] Jeremy Goecks and Elizabeth D. Mynatt. Social approaches
to end-user privacy management. In Lorrie Faith Cranor and
Simson Garfinkel, editors, Security and Usability: Designing
Secure Systems That People Can Use, chapter 25, pages
523–545. O’Reilly, 2005.

[14] Nathan Good, Rachna Dhamija, Jens Grossklags, David
Thaw, Steven Aronowitz, Deirdre Mulligan, and Jospeh
Konstan. Stopping spyware at the gate: A user study of
notice, privacy and spyware. In Symposium on Usable
Privacy and Security (SOUPS) 2005, July 2005.

[15] Il-Horn Hann, Kai-Lung Hui, Tom S. Lee, and I. P. L. Png.
Online information privacy: Measuring the cost-benefit
trade-off. In Proceedings of the Twenty-Third International
Conference on Information Systems, pages 1–8, 2002.

[16] Stephen E. Levy and Carl Gutwin. Improving understanding
of website privacy policies with fine-grained policy anchors.
In WWW ’05: Proceedings of the 14th International
Conference on World Wide Web, pages 480–488, New York,
NY, USA, 2005. ACM Press.

[17] LiveHTTPHeaders Firefox extenstion.
http://livehttpheaders.mozdev.org/.

[18] Lynette Millett, Batya Friedman, and Edward Felten.
Cookies and web browser design: Toward realizing informed
consent online. In Proceedings of the CHI 2001 Conference
on Human Factors in Computing Systems, pages 46–52,
April 2001.

[19] Gavin O’Malley. Jupiter analyst: Nielsen research confirms
users delete cookies. http://publications.
mediapost.com/index.cfm?fuseaction=
Articles.san&s=2%8883&Nid=12855&p=297686.

[20] Permit Cookies. http://gorgias.de/mfe/.
[21] Persistent client state: HTTP cookies, Preliminary

specification. http://wp.netscape.com/newsref/
std/cookie_spec.html.

[22] Kevin Poulsen. Microsoft cookies jump domains.
http://www.securityfocus.com/news/83,
September 2000.

[23] Sites use IFrames to bypass cookie prefs.
https://bugzilla.mozilla.org/show_bug.
cgi?id=158463.

[24] The Platform for Privacy Preferences Project (P3P).
http://www.w3.org/TR/P3P/.

[25] View Cookies. http://www.bitstorm.org/
extensions/view-cookies/.

[26] Ka-Ping Yee. Guidelines and strategies for secure interaction
design. In Lorrie Faith Cranor and Simson Garfinkel, editors,
Security and Usability: Designing Secure Systems That
People Can Use, chapter 13, pages 247–273. O’Reilly, 2005.

